Skip to main content

Analysis of SARS-CoV-2 Temporal Molecular Networks Using Global and Local Topological Characteristics

  • Conference paper
  • First Online:
Computational Advances in Bio and Medical Sciences (ICCABS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13254))

  • 184 Accesses

Abstract

The global COVID-19 pandemic continues to have a devastating impact on human population health. In an effort to fully characterize the virus, a significant volume of SARS-CoV-2 genomes have been collected from infected individuals and sequenced. Comprehensive application of this molecular data toward epidemiological analysis in large parts has employed methods arising from phylogenetics. While undeniably valuable, phylogenetic methods have their limitations. For instance, due to their rooted structure, outgroup samples are often needed to contextualize genetic relationships inferred by branching. In this paper we describe an alternative: global and local topological characterization of neighborhood graphs relating viral genomes collected from samples in longitudinal studies. The applicability of our approach is demonstrated by constructing and analyzing such graphs using two distinct datasets from Israel and France, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization. https://covid19.who.int

  2. Shah, V.K., Firmal, P., Alam, A., Ganguly, D., Chattopadhyay, S.: Overview of immune response during SARS-CoV-2 infection: lessons from the past. Front. Immunol. 11, 1949 (2020). https://doi.org/10.3389/fimmu.2020.01949

    Article  Google Scholar 

  3. Peng, L., et al.: Prioritizing antiviral drugs against SARS-CoV-2 by integrating viral complete genome sequences and drug chemical structures. Sci. Rep. 11, 6248 (2021). https://doi.org/10.1038/s41598-021-83737-5

    Article  Google Scholar 

  4. Naqvi, A.A.T., et al.: Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: structural genomics approach. Biochim. Biophys. Acta Mol. Basis Dis. 1866, 165878 (2020). https://doi.org/10.1016/j.bbadis.2020.165878

    Article  Google Scholar 

  5. Miller, D., et al.: Full genome viral sequences inform patterns of SARS-CoV-2 spread into and within Israel. Nat. Commun. 11, 5518 (2020). https://doi.org/10.1038/s41467-020-19248-0

    Article  Google Scholar 

  6. Danesh, G., et al.: The COVID SMIT PSL group: early phylodynamics analysis of the COVID-19 epidemic in France. Epidemiology (2020). https://doi.org/10.1101/2020.06.03.20119925

  7. Global Initiative on Sharing Avian Influenza Data (GISAID). https://www.gisaid.org

  8. Wymant, C., et al.: STOP-HCV consortium, the maela pneumococcal collaboration, and the BEEHIVE collaboration: PHYLOSCANNER: inferring transmission from within- and between-host pathogen genetic diversity. Mol. Biol. Evol. 35, 719–733 (2018). https://doi.org/10.1093/molbev/msx304

    Article  Google Scholar 

  9. Sledzieski, S., Zhang, C., Mandoiu, I., Bansal, M.S.: TreeFix-TP: phylogenetic error-correction for infectious disease transmission network inference. In: Pacific Symposium on Biocomputing, vol. 26, pp. 119–130 (2021). https://doi.org/10.1142/9789811232701_0012

  10. Didelot, X., Kendall, M., Xu, Y., White, P.J., McCarthy, N.: Genomic epidemiology analysis of infectious disease outbreaks using transphylo. Curr. Protoc. 1, e60 (2021). https://doi.org/10.1002/cpz1.60

    Article  Google Scholar 

  11. Volz, E.M., Koelle, K., Bedford, T.: Viral phylodynamics. PLoS Comput. Biol. 9, e1002947 (2013). https://doi.org/10.1371/journal.pcbi.1002947

    Article  MathSciNet  Google Scholar 

  12. Nascimento, F.F., dos Reis, M., Yang, Z.: A biologist’s guide to Bayesian phylogenetic analysis. Nat. Ecol. Evol. 1, 1446–1454 (2017). https://doi.org/10.1038/s41559-017-0280-x

    Article  Google Scholar 

  13. Zarrabi, N., Prosperi, M., Belleman, R.G., Colafigli, M., De Luca, A., Sloot, P.M.A.: Combining epidemiological and genetic networks signifies the importance of early treatment in HIV-1 transmission. PLoS ONE 7, e46156 (2012). https://doi.org/10.1371/journal.pone.0046156

    Article  Google Scholar 

  14. Kuchaiev, O., Stevanović, A., Hayes, W., Pržulj, N.: GraphCrunch 2: software tool for network modeling, alignment and clustering. BMC Bioinform. 12, 24 (2011). https://doi.org/10.1186/1471-2105-12-24

    Article  Google Scholar 

  15. Hayes, W., Sun, K., Przulj, N.: Graphlet-based measures are suitable for biological network comparison. Bioinformatics 29, 483–491 (2013). https://doi.org/10.1093/bioinformatics/bts729

    Article  Google Scholar 

  16. Skums, P., et al.: QUENTIN: reconstruction of disease transmissions from viral quasispecies genomic data. Bioinformatics 34, 163–170 (2018). https://doi.org/10.1093/bioinformatics/btx402

    Article  Google Scholar 

  17. Vecchio, F., Miraglia, F., Maria Rossini, P.: Connectome: graph theory application in functional brain network architecture. Clin. Neurophysiol. Pract. 2, 206–213 (2017). https://doi.org/10.1016/j.cnp.2017.09.003

    Article  Google Scholar 

  18. Cardoso, D.M., Delorme, C., Rama, P.: Laplacian eigenvectors and eigenvalues and almost equitable partitions. Eur. J. Comb. 28, 665–673 (2007). https://doi.org/10.1016/j.ejc.2005.03.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Kosakovsky Pond, S.L., Weaver, S., Leigh Brown, A.J., Wertheim, J.O.: HIV-TRACE (TRAnsmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens. Mol. Biol. Evol. 35, 1812–1819 (2018). https://doi.org/10.1093/molbev/msy016

    Article  Google Scholar 

  20. Campo, D.S., et al.: Accurate genetic detection of hepatitis C virus transmissions in outbreak settings. J. Infect. Dis. 213, 957–965 (2016). https://doi.org/10.1093/infdis/jiv542

    Article  Google Scholar 

  21. Poon, A.F.Y., et al.: Near real-time monitoring of HIV transmission hotspots from routine HIV genotyping: an implementation case study. Lancet HIV. 3, e231-238 (2016). https://doi.org/10.1016/S2352-3018(16)00046-1

    Article  Google Scholar 

  22. Bartenschlager, R., Lohmann, V.: Replication of hepatitis C virus. J Gen. Virol. 81, 1631–1648 (2000). https://doi.org/10.1099/0022-1317-81-7-1631

    Article  Google Scholar 

  23. Lorenzo-Redondo, R., Ozer, E.A., Achenbach, C.J., D’Aquila, R.T., Hultquist, J.F.: Molecular epidemiology in the HIV and SARS-CoV-2 pandemics. Curr. Opin. HIV AIDS 16, 11–24 (2021). https://doi.org/10.1097/COH.0000000000000660

    Article  Google Scholar 

  24. Katoh, K., Rozewicki, J., Yamada, K.D.: MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 20, 1160–1166 (2019). https://doi.org/10.1093/bib/bbx108

    Article  Google Scholar 

  25. Przulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric? Bioinformatics 20, 3508–3515 (2004). https://doi.org/10.1093/bioinformatics/bth436

    Article  Google Scholar 

  26. Nei, M., Li, W.H.: Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76, 5269–5273 (1979). https://doi.org/10.1073/pnas.76.10.5269

    Article  MATH  Google Scholar 

  27. Kozlov, A.M., Darriba, D., Flouri, T., Morel, B., Stamatakis, A.: RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019). https://doi.org/10.1093/bioinformatics/btz305

    Article  Google Scholar 

  28. Ugurel, O.M., Ata, O., Turgut-Balik, D.: An updated analysis of variations in SARS-CoV-2 genome. Turk. J. Biol. 44, 157–167 (2020). https://doi.org/10.3906/biy-2005-111

    Article  Google Scholar 

  29. Zheng, Y.-X., et al.: Nsp2 has the potential to be a drug target revealed by global identification of SARS-CoV-2 Nsp2-interacting proteins. Acta Biochim. Biophys. Sin. 53, 1134–1141 (2021). https://doi.org/10.1093/abbs/gmab088

    Article  Google Scholar 

  30. Yang, X., Dong, N., Chan, E.W.-C., Chen, S.: Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries. Emerg. Microbes Infect. 9, 1287–1299 (2020). https://doi.org/10.1080/22221751.2020.1773745

    Article  Google Scholar 

  31. Bai, Y., et al.: Comprehensive evolution and molecular characteristics of a large number of SARS-CoV-2 genomes reveal its epidemic trends. Int. J. Infect. Dis. 100, 164–173 (2020). https://doi.org/10.1016/j.ijid.2020.08.066

    Article  Google Scholar 

  32. Yang, H.-C., et al.: Analysis of genomic distributions of SARS-CoV-2 reveals a dominant strain type with strong allelic associations. Proc. Natl. Acad. Sci. U.S.A. 117, 30679–30686 (2020). https://doi.org/10.1073/pnas.2007840117

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded in part by National Science Foundation grant IIS-1817239.

Genome sequences analyzed is this work were submitted and collected be the following laboratories: IDS was submitted by the Stern Lab and collected by Microbiology laboratory, Assuta Ashdod University-Affiliated Hospital (EPI_ISL_447258 - 80); Microbiology Division, Barzilai University Medical Center (EPI_ISL_447281-310); Clinical Virology Laboratory, Soroka Medical Center and the Faculty of Health Sciences, Ben-Gurion University of the Negev (EPI_ISL_447311-30); Clinical Virology Unit, Hadassah Hebrew University Medical Center (EPI_ISL_447331-82, EPI_ISL_447407-16), Clinical Microbiology Laboratory, The Baruch Padeh Medical Center, Poriya (EPI_ISL_447383-406, EPI_ISL_447417-8); and Clinical Microbiology Laboratory, Sheba Medical Center (EPI_ISL_447419-69).

FDS was submitted by two laboratories, namely the National Reference Center for Viruses of Respiratory Infections, Institut Pasteur, Paris. Samples were collected by the Centre Hositalier Universitaire de Rouen Laboratoire de Virologie (EPI_ISL_414624, EPI_ISL_416494); Centre Hospitalier Régional Universitaire de Nantes Laboratoire de Virologie (EPI_ISL_414625); Centre Hospitalier Compiègne Laboratoire de Biologie (EPI_ISL_414627, EPI_ISL_414629-30, EPI_ISL_414634-8, EPI_ISL_415653-4, EPI_ISL_416495-7, EPI_ISL_418218, EPI_ISL_418220-1, EPI_ISL_418223-5, EPI_ISL_418227-8, EPI_ISL_418231, EPI_ISL_418236-9); Hôpital Robert Debré Laboratoire de Virologie (EPI_ISL_414631-2); Centre Hospitalier René Dubois Laboratoire de Microbiologie - Bât A (EPI_ISL_414633); Hôpital Instruction des Armées - BEGIN (EPI_ISL_415650); CH Jean de Navarre Laboratoire de Biologie (EPI_ISL_416493, EPI_ISL_420044, EPI_ISL_420053); Institut Médico legal - Hop R. Poincaré (EPI_ISL_416498); LABM GH nord Essonne (EPI_ISL_416498); Hopital franco britannique - Service des Urgences (EPI_ISL_416501); CHRU Pontchaillou - Laboratoire de Virologie (EPI_ISL_416502, EPI_ISL_416504-6, EPI_ISL_416508-13); CHU - Hôpital Cavale Blanche - Labo. de Virologie (EPI_ISL_418219); CHRU Bretonneau - Serv. Bacterio-Virol. (EPI_ISL_418222); EHPAD - Résidences les Cèdres (EPI_ISL_418226); Hopital franco britannique - Laboratoire (EPI_ISL_418229); Clinique AVERAY LA BROUSTE, Med. Polyvalente (EPI_ISL_418230); Service des Urgences (EPI_ISL_418232-3); Cabinet médical (EPI_ISL_418235); Sentinelles network (EPI_ISL_420038, EPI_ISL_420045, EPI_ISL_420055, EPI_ISL_421514), L’Air du Temps (EPI_ISL_420039-40); CH Compiègne Laboratoire de Biologie (EPI_ISL_420041, EPI_ISL_420049-50, EPI_ISL_420056-7, EPI_ISL_421500, EPI_ISL_421509-11); Service de Biologie clinique (EPI_ISL_420042, EPI_ISL_421513); CMIP (EPI_ISL_420043, EPI_ISL_420061); Résidence Villa Caroline (EPI_ISL_420046-7); Service de Biologie Médicale - BP 125 (EPI_ISL_420048, EPI_ISL_420058-60, EPI_ISL_420062, EPI_ISL_420064, EPI_ISL_421501, EPI_ISL_421504-6, EPI_ISL_421512), Résidence Eleusis (EPI_ISL_420051); Résidence les Marines (EPI_ISL_420052); Résidence de maintenon (EPI_ISL_420054); Labo BM - Site de Juvisy - Hopital Général (EPI_ISL_420063); Parc des Dames (EPI_ISL_421502-3); Le Château de Seine-Port (EPI_ISL_421507-8), and unknown (EPI_ISL_414626, EPI_ISL_415649, EPI_ISL_415651-2, EPI_ISL_415649).

The second submitting laboratory was CNR Virus des Infections Respiratoires - France SUD. Samples were collected by CNR Virus des Infections Respiratoires – France SUD (EPI_ISL_416745-6); Institut des Agents Infectieux (IAI) Hospices Civils de Lyon (EPI_ISL_416747-8, EPI_ISL_416750, EPI_ISL_416754, EPI_ISL_416756, EPI_ISL_416758); Centre Hospitalier de Valence (EPI_ISL_416749, EPI_ISL_418414-5, EPI_ISL_418417, EPI_ISL_419168); CHU Gabriel Montpied (EPI_ISL_416751-2); Centre Hospitalier de Bourg en Bresse (EPI_ISL_416757, EPI_ISL_417340, EPI_ISL_418426, EPI_ISL_419183, EPI_ISL_419185-6, EPI_ISL_420620); Institut des Agents Infectieux (IAI), Hospices Civils de Lyon (EPI_ISL_417333-4, EPI_ISL_417336-7, EPI_ISL_417339, EPI_ISL_418420-5, EPI_ISL_418429-31, EPI_ISL_419169-73, EPI_ISL_419177-82, EPI_ISL_419184, EPI_ISL_420604-11, EPI_ISL_420615-6, EPI_ISL_420618-9, EPI_ISL_420621-5); Centre Hospitalier de Macon (EPI_ISL_417338, EPI_ISL_418413, EPI_ISL_419174-6, EPI_ISL_419187-8, EPI_ISL_420612-4); Centre Hospitalier des Vals d’Ardeche (EPI_ISL_418412); GH Les Portes du Sud (EPI_ISL_418416); Centre Hospitalier Saint Joseph Saint Luc (EPI_ISL_418418-9, EPI_ISL_420617); Hopital Privé de l’Est Lyonnais (EPI_ISL_418418-9, EPI_ISL_420617); and Centre Hospitalier Lucien Hussel (EPI_ISL_418428).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Senchyna, F., Singh, R. (2022). Analysis of SARS-CoV-2 Temporal Molecular Networks Using Global and Local Topological Characteristics. In: Bansal, M.S., et al. Computational Advances in Bio and Medical Sciences. ICCABS 2021. Lecture Notes in Computer Science(), vol 13254. Springer, Cham. https://doi.org/10.1007/978-3-031-17531-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17531-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17530-5

  • Online ISBN: 978-3-031-17531-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics