Skip to main content

Transfer and Continual Supervised Learning for Robotic Grasping Through Grasping Features

  • Conference paper
  • First Online:
Continual Semi-Supervised Learning (CSSL 2021)

Abstract

We present a Transfer and Continual Learning method for robotic grasping tasks, based on small vision-depth (RGBD) datasets and realized through the use of Grasping Features. Given a network architecture composed by a CNN (Convolutional Neural Network) followed by a FCC (Fully Connected Cascade Neural Network), we exploit high-level features specific of the grasping tasks, as extracted by the convolutional network from RGBD images. These features are more descriptive of a grasping task than just visual ones, and thus more efficient for transfer learning purposes. Being datasets for visual grasping less common than those for image recognition, we also propose an efficient way to generate these data using only simple geometric structures. This reduces the computational burden of the FCC and allows to obtain a better performance with the same amount of data. Simulation results using the collaborative UR-10 robot and a jaw gripper are reported to show the quality of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis-a survey. IEEE Trans. Robot. 30(2), 289–309 (2014). https://doi.org/10.1109/TRO.2013.2289018

    Article  Google Scholar 

  2. Delange, M., et al.: A continual learning survey: defying forgetting in classification tasks. IEEE Trans. Pattern Anal. Mach. Intell. 44(7), 3366–3385 (2022). https://doi.org/10.1109/TPAMI.2021.3057446

    Article  Google Scholar 

  3. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org

  4. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? CoRR abs/1608.08614 (2016). http://arxiv.org/abs/1608.08614

  5. Huszár, F.: Note on the quadratic penalties in elastic weight consolidation. Proc. Natl. Acad. Sci. 115(11), E2496–E2497 (2018). https://doi.org/10.1073/pnas.1717042115. https://www.pnas.org/content/115/11/E2496

  6. Jiang, Y., Moseson, S., Saxena, A.: Efficient grasping from RGBD images: learning using a new rectangle representation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3304–3311 (2011). https://doi.org/10.1109/ICRA.2011.5980145

  7. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. 114(13), 3521–3526 (2017). https://doi.org/10.1073/pnas.1611835114. https://www.pnas.org/content/114/13/3521

  8. Kragic, D., Daniilidis, K.: 3-D vision for navigation and grasping. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 811–824. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_32

    Chapter  Google Scholar 

  9. Kuffner, J., Xiao, J.: Motion for manipulation tasks. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics, pp. 897–930. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-32552-1_36

    Chapter  Google Scholar 

  10. Lesort, T., Lomonaco, V., Stoian, A., Maltoni, D., Filliat, D., Díaz-Rodríguez, N.: Continual learning for robotics: definition, framework, learning strategies, opportunities and challenges. Inf. Fusion 58, 52–68 (2020). https://doi.org/10.1016/j.inffus.2019.12.004. https://www.sciencedirect.com/science/article/pii/S1566253519307377

  11. Monorchio, L., Evangelista, D., Imperoli, M., Pretto, A.: Learning from successes and failures to grasp objects with a vacuum gripper. In: IEEE/RSJ IROS Workshop on Task-Informed Grasping for Rigid and Deformable Object Manipulation (2018)

    Google Scholar 

  12. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

  13. Quillen, D., Jang, E., Nachum, O., Finn, C., Ibarz, J., Levine, S.: Deep reinforcement learning for vision-based robotic grasping: a simulated comparative evaluation of off-policy methods. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 6284–6291 (2018). https://doi.org/10.1109/ICRA.2018.8461039

  14. Razavian, A.S., Azizpour, H., Sullivan, J., Carlsson, S.: CNN features off-the-shelf: an astounding baseline for recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 512–519 (2014)

    Google Scholar 

  15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016). https://doi.org/10.1109/CVPR.2016.91

  16. Saxena, A., Driemeyer, J., Ng, A.Y.: Robotic grasping of novel objects using vision. Int. J. Robot. Res. 27(2), 157–173 (2008). https://doi.org/10.1177/0278364907087172

    Article  Google Scholar 

  17. Uijlings, J.R.R., van de Sande, K.E.A., Gevers, T., et al.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013). https://doi.org/10.1007/s11263-013-0620-5

    Article  Google Scholar 

  18. Yen-Chen, L., Zeng, A., Song, S., Isola, P., Lin, T.Y.: Learning to see before learning to act: visual pre-training for manipulation. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 7286–7293 (2020). https://doi.org/10.1109/ICRA40945.2020.9197331

  19. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. CoRR abs/1311.2901 (2013). http://arxiv.org/abs/1311.2901

  20. Zhang, Q., Wu, Y.N., Zhu, S.C.: Interpretable convolutional neural networks. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8827–8836 (2018). https://doi.org/10.1109/CVPR.2018.00920

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Capotondi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monorchio, L., Capotondi, M., Corsanici, M., Villa, W., De Luca, A., Puja, F. (2022). Transfer and Continual Supervised Learning for Robotic Grasping Through Grasping Features. In: Cuzzolin, F., Cannons, K., Lomonaco, V. (eds) Continual Semi-Supervised Learning. CSSL 2021. Lecture Notes in Computer Science(), vol 13418. Springer, Cham. https://doi.org/10.1007/978-3-031-17587-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17587-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17586-2

  • Online ISBN: 978-3-031-17587-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics