Skip to main content

Distilled Replay: Overcoming Forgetting Through Synthetic Samples

  • Conference paper
  • First Online:
Continual Semi-Supervised Learning (CSSL 2021)

Abstract

Replay strategies are Continual Learning techniques which mitigate catastrophic forgetting by keeping a buffer of patterns from previous experiences, which are interleaved with new data during training. The amount of patterns stored in the buffer is a critical parameter which largely influences the final performance and the memory footprint of the approach. This work introduces Distilled Replay, a novel replay strategy for Continual Learning which is able to mitigate forgetting by keeping a very small buffer (1 pattern per class) of highly informative samples. Distilled Replay builds the buffer through a distillation process which compresses a large dataset into a tiny set of informative examples. We show the effectiveness of our Distilled Replay against popular replay-based strategies on four Continual Learning benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The code along with the configuration files needed to reproduce our results are available at https://github.com/andrearosasco/DistilledReplay.

References

  1. Aljundi, R., et al.: Online continual learning with maximal interfered retrieval. Adv. Neural Inf. Process. Syst. 32, 11849–11860 (2019)

    Google Scholar 

  2. Asghar, N., Mou, L., Selby, K.A., Pantasdo, K.D., Poupart, P., Jiang, X.: Progressive memory banks for incremental domain adaptation. In: International Conference on Learning Representations (2019)

    Google Scholar 

  3. Chaudhry, A., Dokania, P.K., Ajanthan, T., Torr, P.H.S.: Riemannian walk for incremental learning: understanding forgetting and intransigence. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 556–572. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_33

    Chapter  Google Scholar 

  4. Chaudhry, A., Ranzato, M., Rohrbach, M., Elhoseiny, M.: Efficient lifelong learning with A-GEM. In: ICLR (2019)

    Google Scholar 

  5. Chaudhry, A., et al.: On Tiny Episodic Memories in Continual Learning. arXiv (2019)

    Google Scholar 

  6. Cossu, A., Carta, A., Bacciu, D.: Continual learning with gated incremental memories for sequential data processing. In: Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN 2020) (2020). https://doi.org/10.1109/ijcnn48605.2020.9207550

  7. Farquhar, S., Gal, Y.: Towards robust evaluations of continual learning. In: Privacy in Machine Learning and Artificial Intelligence Workshop, ICML (2019)

    Google Scholar 

  8. French, R.M.: Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999). https://doi.org/10.1016/S1364-6613(99)01294-2

  9. Goodfellow, I.J., Mirza, M., Xiao, D., Courville, A., Bengio, Y.: An empirical investigation of catastrophic forgetting in gradient-based neural networks (2015)

    Google Scholar 

  10. Grossberg, S.: How does a brain build a cognitive code? Psychol. Rev. 87(1), 1–51 (1980). https://doi.org/10.1037/0033-295X.87.1.1

    Article  Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

  12. Hochreiter, S.: Untersuchungen zu dynamischen neuronalen netzen (1991)

    Google Scholar 

  13. Kirkpatrick, J., et al.: Overcoming catastrophic forgetting in neural networks. PNAS 114(13), 3521–3526 (2017)

    Article  MathSciNet  Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25. Curran Associates, Inc. (2012). https://doi.org/10.1145/3065386

  15. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  16. Lesort, T., et al.: Continual learning for robotics: definition, framework, learning strategies, opportunities and challenges. Inf. Fusion. 58, 52–68 (2020). https://doi.org/10.1016/j.inffus.2019.12.004

  17. Lomonaco, V., Maltoni, D.: CORe50: a new dataset and benchmark for continuous object recognition. In: Proceedings of the 1st Annual Conference on Robot Learning, vol. 78, pp. 17–26 (2017)

    Google Scholar 

  18. Lopez-Paz, D., Ranzato, M.: Gradient episodic memory for continual learning. Adv. Neural Inf. Process. Syst. 30, 6468–6477 (2017)

    Google Scholar 

  19. McClelland, J.L., McNaughton, B.L., O’Reilly, R.C.: Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995). https://doi.org/10.1037/0033-295X.102.3.419

    Article  Google Scholar 

  20. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017). https://doi.org/10.1109/cvpr.2017.587

  21. Rusu, A.A., et al.: Progressive Neural Networks. arXiv (2016)

    Google Scholar 

  22. Shin, H., Lee, J.K., Kim, J., Kim, J.: Continual learning with deep generative replay. In: Guyon, I., (eds.) et al. Advances in Neural Information Processing Systems, vol. 30, pp. 2990–2999. Curran Associates, Inc. (2017)

    Google Scholar 

  23. Sun, F.K., Ho, C.H., Lee, H.Y.: LAMOL: LAnguage MOdeling for Lifelong Language Learning. In: ICLR (2020)

    Google Scholar 

  24. Thrun, S.: A lifelong learning perspective for mobile robot control. In: Graefe, V. (ed.) Intelligent Robots and Systems, pp. 201–214. Elsevier Science B.V., Amsterdam (1995). https://doi.org/10.1016/B978-044482250-5/50015-3

  25. van de Ven, G.M., Siegelmann, H.T., Tolias, A.S.: Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11, 4069 (2020). https://doi.org/10.1038/s41467-020-17866-2

  26. van de Ven, G.M., Tolias, A.S.: Three scenarios for continual learning. arXiv (2019)

    Google Scholar 

  27. Wang, T., Zhu, J.Y., Torralba, A., Efros, A.A.: Dataset distillation. arXiv (2018)

    Google Scholar 

  28. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv (2017)

    Google Scholar 

  29. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: International Conference on Machine Learning, pp. 3987–3995 (2017)

    Google Scholar 

  30. Zhao, B., Bilen, H.: Dataset condensation with differentiable Siamese augmentation (2021)

    Google Scholar 

  31. Zhao, B., Mopuri, K.R., Bilen, H.: Dataset condensation with gradient matching (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Rosasco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rosasco, A., Carta, A., Cossu, A., Lomonaco, V., Bacciu, D. (2022). Distilled Replay: Overcoming Forgetting Through Synthetic Samples. In: Cuzzolin, F., Cannons, K., Lomonaco, V. (eds) Continual Semi-Supervised Learning. CSSL 2021. Lecture Notes in Computer Science(), vol 13418. Springer, Cham. https://doi.org/10.1007/978-3-031-17587-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17587-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17586-2

  • Online ISBN: 978-3-031-17587-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics