Abstract
Eye movement data can show the cognitive process in performing tasks to a certain extent. The existing researches on eye movement analysis are usually based on statistics, and it is difficult to show the correlation between the information associated with the scene. Other probabilistic algorithms usually focus on user feature recognition based on eye movement representation. In this paper, the concept of time-domain and frequency-domain analysis of eye movement area of interest is proposed, within which, the frequent pattern mining method and visual cognitive graph model are constructed to mine the relationship between the areas of interest. Finally, some application examples of this model in the novice expert paradigm are presented.
Supported by the Key Research and Development Program of Shaanxi 2020SF-152, and Educational reform research project 2022JGY10.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Blascheck, T., Kurzhals, K., Raschke, M., Burch, M., Weiskopf, D., Ertl, T.: Visualization of eye tracking data: a taxonomy and survey. In: Computer Graphics Forum, vol. 36, pp. 260–284. Wiley Online Library (2017)
Blascheck, T., Kurzhals, K., Raschke, M., Strohmaier, S., Weiskopf, D., Ertl, T.: Aoi hierarchies for visual exploration of fixation sequences. In: Proceedings of the Ninth Biennial ACM Symposium on Eye Tracking Research and Applications. ETRA 2016, pp. 111–118. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2857491.2857524
Blascheck, T., Schweizer, M., Beck, F., Ertl, T.: Visual comparison of eye movement patterns. In: Computer Graphics Forum, vol. 36, pp. 87–97. Wiley Online Library (2017)
Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177 (2001)
Burch, M., Kumar, A., Timmermans, N.: An interactive web-based visual analytics tool for detecting strategic eye movement patterns. In: Proceedings of the 11th ACM Symposium on Eye Tracking Research and Applications. ETRA 2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3317960.3321615
Burch, M., Veneri, A., Sun, B.: Eyeclouds: a visualization and analysis tool for exploring eye movement data. In: Proceedings of the 12th International Symposium on Visual Information Communication and Interaction. VINCI’2019. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3356422.3356423
Chew, J.Y., Ohtomi, K., Suzuki, H.: Monitoring attention of crane operators during load oscillations using gaze entropy measures. In: Stephanidis, C., et al. (eds.) HCII 2021. LNCS, vol. 13096, pp. 44–61. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90328-2_3
Chuk, T., Chan, A.B., Shimojo, S., Hsiao, J.H.: Eye movement analysis with switching hidden Markov models. Behav. Res. Methods 52(3), 1026–1043 (2020)
Chuk, T., Crookes, K., Hayward, W.G., Chan, A.B., Hsiao, J.H.: Hidden Markov model analysis reveals the advantage of analytic eye movement patterns in face recognition across cultures. Cognition 169, 102–117 (2017)
Dong, W., Jiang, Y., Zheng, L., Liu, B., Meng, L.: Assessing map-reading skills using eye tracking and Bayesian structural equation modelling. Sustainability 10(9) (2018). https://doi.org/10.3390/su10093050
Guo, J.J., Zhou, R., Zhao, L.M., Lu, B.L.: Multimodal emotion recognition from eye image, eye movement and EEG using deep neural networks. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3071–3074. IEEE (2019)
Katona, J.: A review of human-computer interaction and virtual reality research fields in cognitive infocommunications. Appl. Sci. 11(6) (2021). https://doi.org/10.3390/app11062646
Kovari, A., Katona, J., Costescu, C.: Evaluation of eye-movement metrics in a software debbuging task using gp3 eye tracker. Acta Polytechnica Hungarica 17(2), 57–76 (2020)
Kurzhals, K., Hlawatsch, M., Seeger, C., Weiskopf, D.: Visual analytics for mobile eye tracking. IEEE Trans. Visual Comput. Graphics 23(1), 301–310 (2017). https://doi.org/10.1109/TVCG.2016.2598695
Liversedge, S.P., Findlay, J.M.: Saccadic eye movements and cognition. Trends Cogn. Sci. 4(1), 6–14 (2000)
Seelig, S.A., Rabe, M.M., Malem-Shinitski, N., Risse, S., Reich, S., Engbert, R.: Bayesian parameter estimation for the swift model of eye-movement control during reading. J. Math. Psychol. 95, 102313 (2020)
Török, Á., Török, Z.G., Tölgyesi, B.: Cluttered centres: interaction between eccentricity and clutter in attracting visual attention of readers of a 16th century map. In: 2017 8th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000433–000438. IEEE (2017)
Ujbanyi, T., Katona, J., Sziladi, G., Kovari, A.: Eye-tracking analysis of computer networks exam question besides different skilled groups. In: 2016 7th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000277–000282. IEEE (2016)
Xiong, W., Wang, Yu., Zhou, Q., Liu, Z., Zhang, X.: The research of eye movement behavior of expert and novice in flight simulation of landing. In: Harris, D. (ed.) EPCE 2016. LNCS (LNAI), vol. 9736, pp. 485–493. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40030-3_47
Yang, C.K., Wacharamanotham, C.: AlpScarf: augmenting scarf plots for exploring temporal gaze patterns. In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–6 (2018)
Zhang, L., Ma, G., Zhou, J., Jia, F.: Human-computer interface design of intelligent spinning factory monitoring system based on eye tracking technology. In: Ahram, T.Z., Falcão, C.S. (eds.) AHFE 2021. LNNS, vol. 275, pp. 579–586. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80091-8_69
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jin, D., Yu, W., Yang, X., Wang, H., Peng, R. (2022). To Discover Novice Expert Paradigm: Sequence-Based Time-Domain and Graph-Based Frequency-Domain Analysis Method of Eye Movement. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction. HCII 2022. Lecture Notes in Computer Science, vol 13516. Springer, Cham. https://doi.org/10.1007/978-3-031-17615-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-17615-9_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17614-2
Online ISBN: 978-3-031-17615-9
eBook Packages: Computer ScienceComputer Science (R0)