Skip to main content

A Comparative Study of Prototyping Methods for HCI Design Using Cognitive Load-Based Measures

  • Conference paper
  • First Online:
HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13516))

Included in the following conference series:

  • 1328 Accesses

Abstract

Increased information complexity in HCI designs causes cognitive load on users. HCI design prototypes have been used in various stages of design process to assess the design quality and enable course correction. However, there are only a few studies reported on suitability of prototyping methods for HCI design process in testing. Also, there is a dearth of literature on cognitive load (CL) based measurement for different prototyping methods. This paper reports a comparative study of prototyping methods for HCI based control panel design from CL perspective. Comparisons of prototyping methods have been reported based on three CL measurement methods namely, subjective measure, task performance and physiological measure. Results of three CL methods were congruent and shows that, software prototype caused significantly lower CL compared to paper prototype testing. Also, it is concluded that software prototype is more suitable prototyping method in cyber physical production system scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, E.W., Potter, K.C., Matzen, L.E., Shepherd, J.F., Preston, G.A., Silva, C.T.: A user study of visualization effectiveness using EEG and cognitive load. Comput. Graph. Forum 30(3), 791–800 (2011)

    Article  Google Scholar 

  2. Antonenko, P., Paas, F., Grabner, R., Van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22(4), 425–438 (2010)

    Article  Google Scholar 

  3. Archer, N.P., Yuan, Y.: Comparing telephone-computer interface designs: are software simulations as good as hardware prototypes? Int. J. Hum. Comput. Stud. 42(2), 169–184 (1995)

    Article  Google Scholar 

  4. Brünken, R., Steinbacher, S., Plass, J.L., Leutner, D.: Assessment of cognitive load in multimedia learning using dual-task methodology. Exp. Psychol. 49(2), 109–119 (2002)

    Article  Google Scholar 

  5. Cinaz, B., Arnrich, B., Tröster, G.: Monitoring of cognitive functioning by measuring reaction times with wearable devices. In: 5th International Conference on Pervasive Computing Technologies for Healthcare, pp. 514–517, Dublin, Ireland. IEEE (2011)

    Google Scholar 

  6. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  7. DeLeeuw, K.E., Mayer, R.E.: A comparison of three measures of cognitive load: evidence for separable measures of intrinsic, extraneous, and germane load. J. Educ. Psychol. 100(1), 223–234 (2008)

    Article  Google Scholar 

  8. Haapalainen, E., Kim, S., Forlizzi, J., Dey, A.: Psycho-Physiological Measures for Assessing Cognitive Load. In: 12th ACM International Conference on Ubiquitous Computing, Copenhagen, Denmark, pp. 301–310. ACM (2010)

    Google Scholar 

  9. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv. Psychol. 52, 139–183 (1988)

    Article  Google Scholar 

  10. Hoonakker, P., et al.: Measuring workload of ICU nurses with a questionnaire survey: the NASA Task Load Index (TLX). IIE Trans. Healthcare Syst. Eng. 1(2), 131–143 (2011)

    Article  Google Scholar 

  11. Hozdić, E.: Smart factory for industry 4.0: a review. Int. J. Mod. Manuf. Technol. 7(1), 28–35 (2015)

    Google Scholar 

  12. Hoggan, E., Brewster, S., Johnston, J.: Investigating the effectiveness of tactile feedback for mobile touchscreens. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Montreal, Canada, pp. 1573–1582. ACM (2008)

    Google Scholar 

  13. Homan, R.W., Herman, J., Purdy, P.: Cerebral location of international 10–20 system electrode placement. Electroencephalogr. Clin. Neurophysiol. 66(4), 376–382 (1987)

    Article  Google Scholar 

  14. Klass, D.W.: The continuing challenge of artifacts in the EEG. Am. J. EEG Technol. 35(4), 239–269 (1995)

    Article  Google Scholar 

  15. Kjeldskov, J., Stage, J.: New techniques for usability evaluation of mobile systems. Int. J. Hum Comput Stud. 60(5–6), 599–620 (2004)

    Article  Google Scholar 

  16. Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: an experimental study. Procedia Comput. Sci. 84, 70–78 (2016)

    Article  Google Scholar 

  17. Kumar, N., Kumar, J.: Measurement of efficiency of auditory vs visual communication in HMI: a cognitive load approach. In: Proceedings of the International Conference on Advances in Human–Machine Interaction, Bangalore, India, pp. 1–8. IEEE (2016b). https://doi.org/10.1109/HMI.2016.7449168

  18. Kumar, N., Kumar, J.: Efficiency 4.0 for Industry 4.0. Hum. Technol. J. 15(1), 55–78 (2019)

    Google Scholar 

  19. MacDougall, W.: Industry 4.0: smart manufacturing for the future, Berlin, Germany. GTAI (2014)

    Google Scholar 

  20. Mittelstädt, V., Brauner, P., Blum, M., Ziefle, M.: On the visual design of ERP systems the–role of information complexity, presentation and human factors. Procedia Manuf. 3, 448–455 (2015)

    Article  Google Scholar 

  21. Norman, D.: The Design of Everyday Things. Basic Books, New York (2013)

    Google Scholar 

  22. Paas, F., Renkl, A., Sweller, J.: Cognitive load theory and instructional design: recent development. Educ. Psychol. 38(1), 1–4 (2003)

    Article  Google Scholar 

  23. Patricia, A.: The role of cognitive theory in human computer interface. Comput. Hum. Behav. 19(5), 593–607 (2003)

    Article  Google Scholar 

  24. Reid, G.B., Nygren, T.E.: The subjective workload assessment technique: a scaling procedure for measuring mental workload. Adv. Psychol. 52, 185–218 (1988). https://doi.org/10.1016/S0166-4115(08)62387-0

    Article  Google Scholar 

  25. Rudd, J., Stern, K., Isensee, S.: Low vs high-fidelity prototyping debate. Interactions 3(1), 76–85 (1996)

    Article  Google Scholar 

  26. Rumelhart, D.E., Norman, D.A.: Analogical processes in learning. In: Anderson, J.R. (ed.) Cognitive Skills and Their Acquisition, pp. 335–359 (1981)

    Google Scholar 

  27. Saeid, S., Chambers, J.A.: EEG Signal Processing. Southern Gate, Chichester, West Sussex, England: Wiley Online Library (2007)

    Google Scholar 

  28. Sefelin, R., Tscheligi, M., Giller, V.: Paper prototyping-what is it good for?: a comparison of paper-and computer-based low-fidelity prototyping. In: CHI 2003 Extended Abstracts on Human Factors in Computing Systems, pp. 778–779, Ft. Lauderdale, Florida, USA. ACM (2003)

    Google Scholar 

  29. Schmeck, A., Opfermann, M., van Gog, T., Paas, F., Leutner, D.: Measuring cognitive load with subjective rating scales during problem solving: differences between immediate and delayed ratings. Instr. Sci. 43(1), 93–114 (2014). https://doi.org/10.1007/s11251-014-9328-3

    Article  Google Scholar 

  30. Van Gog, T., Paas, F., Van Merriënboer, J.J.: Effects of process-oriented worked examples on troubleshooting transfer performance. Learn. Instr. 16(2), 154–164 (2006)

    Article  Google Scholar 

  31. Walker, M., Takayama, L., Landay, J.A.: High-fidelity or low-fidelity, paper or computer? Choosing attributes when testing web prototypes. In: 46th Annual Meeting on Human Factors and Ergonomics Society, Los Angeles, California, USA, pp. 661–665. SAGE Publications (2002)

    Google Scholar 

  32. Wierwille, W.W., Casali, J.G.: A validated rating scale for global mental workload measurement applications. In: Proceedings of the Human Factors Society Annual Meeting, Los Angeles, California, USA, pp. 129–133. Sage Publication (1983)

    Google Scholar 

  33. Wittenberg, C.: Cause the Trend Industry 4.0 in the Automated Industry to New Requirements on User Interfaces? In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9171, pp. 238–245. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21006-3_24

    Chapter  Google Scholar 

  34. Wong, Y.: Rough and ready prototypes: lessons from graphic design. In: SIGCHI Conference on Human Factors in Computing Systems, Monterey, CA, pp. 83–84. ACM (1992)

    Google Scholar 

  35. Zarjam, P., Epps, J., Chen, F.: Spectral EEG features for evaluating cognitive load. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA, pp. 3841–3844 (2011)

    Google Scholar 

  36. Zeki, S.: A Vision of the Brain. Blackwell Scientific Publications (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, N., Kumar, J., Kumar, J. (2022). A Comparative Study of Prototyping Methods for HCI Design Using Cognitive Load-Based Measures. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Design, User Experience and Interaction. HCII 2022. Lecture Notes in Computer Science, vol 13516. Springer, Cham. https://doi.org/10.1007/978-3-031-17615-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17615-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17614-2

  • Online ISBN: 978-3-031-17615-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics