Skip to main content

Abstract

The COVID-19 pandemic has shown that the use of the technology in medicine is no longer a luxury, but a necessity. The use of the robotics in the treatment of diseases and physical therapies is limited in Latin America due to the high acquisition and maintenance costs. This document proposes the design, development, and evaluation of a robotic system for the guided monitoring of patients, through remote control using a mobile application. Within the methodology, four phases were proposed: planning, design, development, and evaluation. The 3D design is done using the Tinkercad software, which facilitates the construction of the pieces using 3D printing technology. The ESP32 board is the main element that receives the signals from the sensors and controls the actions of the actuators through the orders received from Firebase. For the development of the application, App inventor is used, building a friendly and easy-to-use interface. To validate this proposal, experimental tests were carried out with two patients in a medical center. In addition, a parameter compliance questionnaire was applied to the robot, obtaining a score of 92.6%, and the mobile application obtained 72.5% in the usability test. All this confirms an efficient care proposal, with a reduced investment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varela-Aldás, J., Buele, J., Jadan-Guerrero, J., Andaluz, V.H.: Teaching STEM competencies through an educational mobile robot. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2020. LNCS, vol. 12206, pp. 560–573. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50506-6_38

    Chapter  Google Scholar 

  2. Murphy, R.R.: Robots and pandemics in science fiction. Sci. Robot. 5 (2020). https://doi.org/10.1126/SCIROBOTICS.ABB9590

  3. Yang, G.Z., et al.: Combating COVID-19-the role of robotics in managing public health and infectious diseases. Sci. Robot. 5, 5589 (2020). https://doi.org/10.1126/scirobotics.abb5589

    Article  Google Scholar 

  4. Varela-Aldás, J., Moreira, A., Criollo, P., Ruales, B.: Body temperature control using a robotic arm. In: Botto Tobar, M., Cruz, H., Díaz Cadena, A. (eds.) CIT 2020. LNEE, vol. 762, pp. 280–293. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72208-1_21

    Chapter  Google Scholar 

  5. Wazir, H.K., Lourido, C., Chacko, S.M., Kapila, V.: A COVID-19 emergency response for remote control of a dialysis machine with mobile HRI. Front. Robot. AI. 8 (2021). https://doi.org/10.3389/frobt.2021.612855

  6. Diehl, J.J., Schmitt, L.M., Villano, M., Crowell, C.R.: The clinical use of robots for individuals with autism spectrum disorders: a critical review. Res. Autism Spectr. Disord. 6, 249–262 (2012). https://doi.org/10.1016/j.rasd.2011.05.006

    Article  Google Scholar 

  7. Lo, A.C., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362, 1772–1783 (2010). https://doi.org/10.1056/nejmoa0911341

    Article  Google Scholar 

  8. Khan, Z.H., Siddique, A., Lee, C.W.: Robotics utilization for healthcare digitization in global COVID-19 management. Int. J. Environ. Res. Public Health. 17, 3819 (2020). https://doi.org/10.3390/ijerph17113819

    Article  Google Scholar 

  9. Talahua, J.S., Buele, J., Calvopina, P., Varela-Aldas, J.: Facial recognition system for people with and without face mask in times of the covid-19 pandemic. Sustain. 13, 6900 (2021). https://doi.org/10.3390/su13126900

    Article  Google Scholar 

  10. Varela-Aldás, J., Pilla, J., Llugsha, E., Cholota, O.: Application of hand disinfectant gel using a SCARA. In: Rocha, Á., Ferrás, C., López-López, P.C., Guarda, T. (eds.) ICITS 2021. AISC, vol. 1331, pp. 13–23. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68418-1_2

    Chapter  Google Scholar 

  11. Feng, Q.C., Wang, X.: Design of disinfection robot for livestock breeding. Procedia Comput. Sci. 166, 310–314 (2020). https://doi.org/10.1016/j.procs.2020.02.093

    Article  Google Scholar 

  12. Taylor, W., et al.: DNA damage kills bacterial spores and cells exposed to 222-nanometer UV radiation. Appl. Environ. Microbiol. 86 (2020). https://doi.org/10.1128/AEM.03039-19

  13. Bogue, R.: Robots in a contagious world. Ind. Rob. 47, 673–642 (2020). https://doi.org/10.1108/IR-05-2020-0101

    Article  Google Scholar 

  14. Singh, S., Dalla, V.K., Shrivastava, A.: Combating COVID-19: study of robotic solutions for COVID-19. AIP Conf. Proc. 2341, 020042 (2021). https://doi.org/10.1063/5.0050148

    Article  Google Scholar 

  15. Vincent Wang, X., Wang, L.: A literature survey of the robotic technologies during the COVID-19 pandemic. J. Manuf. Syst. 60, 823–836 (2021). https://doi.org/10.1016/j.jmsy.2021.02.005

  16. Sonntag, D.: AI in medicine, Covid-19 and springer nature’s open access agreement. KI - Künstliche Intelligenz 34(2), 123–125 (2020). https://doi.org/10.1007/s13218-020-00661-y

    Article  Google Scholar 

  17. Varela-Aldás, J., Pilla, J., Andaluz, V.H., Palacios-Navarro, G.: Commercial entry control using robotic mechanism and mobile application for COVID-19 Pandemic. In: Gervasi, O., et al. (eds.) ICCSA 2021. LNCS, vol. 12957, pp. 3–14. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87013-3_1

    Chapter  Google Scholar 

  18. Østvik, A., Bø, L.E., Smistad, E.: EchoBot: an open-source robotic ultrasound system. In: Proceedings of the IPCAI 2019 (2019)

    Google Scholar 

  19. Murugan, K., Ali Khan, M.A., Kylash, M., Muralidharan, M.: Medicine distribution robot and human less intervention for Covid-19 affected people (AKM Med Assistive Bot). IOP Conf. Ser. Mater. Sci. Eng. 1049, 012013 (2021). https://doi.org/10.1088/1757-899x/1049/1/012013

    Article  Google Scholar 

  20. Manikandan, P., Ramesh, G., Likith, G., Sreekanth, D., Durga Prasad, G.: Smart nursing robot for COVID-19 patients. In: 2021 International Conference on Advance Computing and Innovative Technologies in Engineering, ICACITE 2021, pp. 839–842. Institute of Electrical and Electronics Engineers Inc. (2021). https://doi.org/10.1109/ICACITE51222.2021.9404698

  21. Oishi, A.N., Tanjim, M.S.S., Palash, M.M., Barua, S., Sarkar, M.R., Rafi, S.A.: Cyclic task-based affordable robot for medicine-intake purpose of COVID-19 patient. In: 2nd International Conference on Robotics, Electrical and Signal Processing Techniques, pp. 403–407 (2021). https://doi.org/10.1109/ICREST51555.2021.9331070

  22. Kimmig, R., Verheijen, R.H.M., Rudnicki, M.: Robot assisted surgery during the COVID-19 pandemic, especially for gynecological cancer: a statement of the society of European Robotic Gynaecological surgery (SERGS). J. Gynecol. Oncol. 31 (2020). https://doi.org/10.3802/jgo.2020.31.e59

  23. Mishra, S.S., Rasool, A.: IoT health care monitoring and tracking: a survey. In: Proceedings of the International Conference on Trends in Electronics and Informatics, ICOEI 2019, pp. 1052–1057 (2019). https://doi.org/10.1109/ICOEI.2019.8862763

  24. Danielsson, O., Syberfeldt, A., Brewster, R., Wang, L.: Assessing instructions in augmented reality for human-robot collaborative assembly by using demonstrators. Procedia CIRP 63, 89–94 (2017). https://doi.org/10.1016/j.procir.2017.02.038

    Article  Google Scholar 

  25. Brooke, J.: SUS: a retrospective. J. Usability Stud. 8, 29–40 (2013)

    Google Scholar 

  26. Scassellati, B., Vázquez, M.: The potential of socially assistive robots during infectious disease outbreaks. Sci. Robot. 5 (2020). https://doi.org/10.1126/scirobotics.abc9014

Download references

Acknowledgments

Thanks are extended to the Universidad Tecnológica Indoamérica for providing the necessary resources for the development and dissemination of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Varela-Aldás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varela-Aldás, J., Buele, J., Guerrero-Núñez, S., Andaluz, V.H. (2022). Mobile Manipulator for Hospital Care Using Firebase. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments. HCII 2022. Lecture Notes in Computer Science, vol 13519. Springer, Cham. https://doi.org/10.1007/978-3-031-17618-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17618-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17617-3

  • Online ISBN: 978-3-031-17618-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics