Skip to main content

Design Thinking the Human-AI Experience of Neurotechnology for Knowledge Workers

  • Conference paper
  • First Online:
HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13519))

Included in the following conference series:

  • 976 Accesses

Abstract

Neurotechnology promises cognitive enhancement as a way for humanity to extend its information-processing capability without invasive brain surgeries and pharmacological side effects. Notable advancements in this field have achieved high-bandwidth wireless communication interfaces between human brains and computers. Human-centered design proposes that human-technology experiences should focus on human needs. This paper explains how design thinking has been applied as a methodology to design the user experience of an attention-based neurotechnology solution that leverages artificial intelligence (AI) to enhance the flow performance and cognitive well-being of knowledge workers (KWs). Using the d.school design thinking process, we started with a mindset that favored empathy, creative confidence, and ambiguity to discover and define the problems confronting KWs. After diverging with deep empathy and converging on user personas and problem definition, the design thinking process branched into an iterative prototyping cycle that transformed our initial ideas into a human-centered AI-powered neurotechnology. We utilized the functional prototypes for testing assumptions and performing a comprehensive design evaluation. Our final solution incorporated a gamified user interface with visual elements, affordances, and a coherent human-AI experience. Expert software evaluators conducted a series of cognitive walkthroughs and heuristic evaluations by simulating the user personas and performing an end-to-end user scenario with the prototype. The design thinking process generated a neurotechnology service with a human-AI experience that enables KWs to achieve healthy flow performance while enhancing cognitive well-being.

Supported by L3 Harris Institute for Assured Information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abuhamdeh, S.: Investigating the “flow’’ experience: key conceptual and operational issues. Front. Psychol. 11, 158 (2020)

    Article  Google Scholar 

  2. Alves, N.T., Fukusima, S.S., Aznar-Casanova, J.A.: Models of brain asymmetry in emotional processing. Psychol. Neurosci. 1, 63–66 (2008)

    Google Scholar 

  3. Amankwah-Amoah, J., Khan, Z., Wood, G., Knight, G.: COVID-19 and digitalization: the great acceleration. J. Bus. Res. 136, 602–611 (2021)

    Article  Google Scholar 

  4. Barwick, F., Arnett, P., Slobounov, S.: EEG correlates of fatigue during administration of a neuropsychological test battery. Clin. Neurophysiol. 123(2), 278–284 (2012)

    Article  Google Scholar 

  5. Berka, C., et al.: EEG correlates of task engagement and mental workload in vigilance, learning, and memory tasks. Aviat. Space Environ. Med. 78(5), B231–B244 (2007)

    Google Scholar 

  6. Boksem, M.A., Meijman, T.F., Lorist, M.M.: Effects of mental fatigue on attention: an ERP study. Cogn. Brain Res. 25(1), 107–116 (2005)

    Article  Google Scholar 

  7. Bostrom, N., Sandberg, A.: Cognitive enhancement: methods, ethics, regulatory challenges. Sci. Eng. Ethics 15(3), 311–341 (2009)

    Article  Google Scholar 

  8. Cheng, S.Y., Hsu, H.T.: Mental fatigue measurement using EEG. IntechOpen (2011)

    Google Scholar 

  9. Colzato, L.S., Hommel, B., Beste, C.: The downsides of cognitive enhancement. Neuroscientist 27(4), 322–330 (2021)

    Article  Google Scholar 

  10. Csikszentmihalyi, M.: Flow: the psychology of optimal performance (1990)

    Google Scholar 

  11. Csikszentmihalyi, M.: Happiness and creativity. Futurist 31(5), S8 (1997)

    Google Scholar 

  12. Csikszentmihalyi, M.: Play and intrinsic rewards. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 135–153. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_10

    Chapter  Google Scholar 

  13. Csikszentmihalyi, M.: Toward a psychology of optimal experience. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 209–226. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_14

    Chapter  Google Scholar 

  14. Dasari, D., Shou, G., Ding, L.: ICA-derived EEG correlates to mental fatigue, effort, and workload in a realistically simulated air traffic control task. Front. Neurosci. 11, 297 (2017)

    Article  Google Scholar 

  15. De Gennaro, L., et al.: Neurophysiological correlates of sleepiness: a combined TMS and EEG study. Neuroimage 36(4), 1277–1287 (2007)

    Article  Google Scholar 

  16. DeLosAngeles, D., et al.: Electroencephalographic correlates of states of concentrative meditation. Int. J. Psychophysiol. 110, 27–39 (2016)

    Article  Google Scholar 

  17. Demos, J.N.: Getting Started with EEG Neurofeedback. Norton & Company (2019)

    Google Scholar 

  18. Dittner, A.J., Wessely, S.C., Brown, R.G.: The assessment of fatigue: a practical guide for clinicians and researchers. J. Psychosom. Res. 56(2), 157–170 (2004)

    Article  Google Scholar 

  19. Dubljević, V., Saigle, V., Racine, E.: The rising tide of tDCS in the media and academic literature. Neuron 82(4), 731–736 (2014)

    Article  Google Scholar 

  20. Eskridge, T.C., Weekes, T.R.: Opportunities for case-based reasoning in personal flow and productivity management. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 349–354. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_23

    Chapter  Google Scholar 

  21. Farah, M.J.: The unknowns of cognitive enhancement. Science 350(6259), 379–380 (2015)

    Article  Google Scholar 

  22. Freeman, F.G., Mikulka, P.J., Prinzel, L.J., Scerbo, M.W.: Evaluation of an adaptive automation system using three EEG indices with a visual tracking task. Biol. Psychol. 50(1), 61–76 (1999)

    Article  Google Scholar 

  23. Grammer, J.K., Xu, K., Lenartowicz, A.: Effects of context on the neural correlates of attention in a college classroom. npj Sci. Learn. 6(1), 1–4 (2021)

    Article  Google Scholar 

  24. Katahira, K., Yamazaki, Y., Yamaoka, C., Ozaki, H., Nakagawa, S., Nagata, N.: EEG correlates of the flow state: a combination of increased frontal theta and moderate frontocentral alpha rhythm in the mental arithmetic task. Front. Psychol. 9, 300 (2018)

    Article  Google Scholar 

  25. Keller, B.M.: Cognitive avionics toolset for operator state classification based on physiological signals. In: 2007 IEEE/AIAA 26th Digital Avionics Systems Conference, p. 6-A. IEEE (2007)

    Google Scholar 

  26. Kim, M.K., Kim, M., Oh, E., Kim, S.P.: A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

  27. Koelstra, S., et al.: DEAP: a database for emotion analysis. Using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012)

    Article  Google Scholar 

  28. Krigolson, O.E., Williams, C.C., Norton, A., Hassall, C.D., Colino, F.L.: Choosing MUSE: validation of a low-cost, portable EEG system for ERP research. Front. Neurosci. 11, 109 (2017)

    Article  Google Scholar 

  29. Langner, R., Steinborn, M.B., Chatterjee, A., Sturm, W., Willmes, K.: Mental fatigue and temporal preparation in simple reaction-time performance. Acta Physiol. (Oxf). 133(1), 64–72 (2010)

    Google Scholar 

  30. Lim, S., Yeo, M., Yoon, G.: Comparison between concentration and immersion based on EEG analysis. Sensors 19(7), 1669 (2019)

    Article  Google Scholar 

  31. Marzbani, H., Marateb, H.R., Mansourian, M.: Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143 (2016)

    Google Scholar 

  32. Matthews, G., Desmond, P.A.: Task-induced fatigue states and simulated driving performance. Q. J. Exp. Psychol. Sect. A 55(2), 659–686 (2002)

    Article  Google Scholar 

  33. Milstein, N., Gordon, I.: Validating measures of electrodermal activity and heart rate variability derived from the empatica E4 utilized in research settings that involve interactive dyadic states. Front. Behav. Neurosci. 14, 148 (2020)

    Article  Google Scholar 

  34. Müller, O., Rotter, S.: Neurotechnology: current developments and ethical issues. Front. Syst. Neurosci. 11, 93 (2017)

    Article  Google Scholar 

  35. Murray, A.J., Greenes, K.A.: From the knowledge worker to the knowledge economy: six billion minds co-creating the future. Vine (2007)

    Google Scholar 

  36. Nacke, L.: Affective ludology: scientific measurement of user experience in interactive entertainment. Ph.D. thesis, Blekinge Institute of Technology (2009)

    Google Scholar 

  37. Nakamura, J., Csikszentmihalyi, M.: The concept of flow. In: Csikszentmihalyi, M. (ed.) Flow and the Foundations of Positive Psychology, pp. 239–263. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-017-9088-8_16

    Chapter  Google Scholar 

  38. Newport, C.: Deep Work: Rules for Focused Success in a Distracted World. Hachette, UK (2016)

    Google Scholar 

  39. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 152–158 (1994)

    Google Scholar 

  40. Norman, D.: The Design of Everyday Things: Revised and Expanded Edition. Basic Books (2013)

    Google Scholar 

  41. Ota, T., Toyoshima, R., Yamauchi, T.: Measurements by biphasic changes of the alpha band amplitude as indicators of arousal level. Int. J. Psychophysiol. 24(1–2), 25–37 (1996)

    Article  Google Scholar 

  42. Plattner, H., Meinel, C., Leifer, L.: Design Thinking Research. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21643-5

    Book  Google Scholar 

  43. Prinzel, L.J., Freeman, F.G., Scerbo, M.W., Mikulka, P.J., Pope, A.T.: A closed-loop system for examining psychophysiological measures for adaptive task allocation. Int. J. Aviat. Psychol. 10(4), 393–410 (2000)

    Article  Google Scholar 

  44. Putze, F., Jarvis, J.P., Schultz, T.: Multimodal recognition of cognitive workload for multitasking in the car. In: 2010 20th International Conference on Pattern Recognition, pp. 3748–3751. IEEE (2010)

    Google Scholar 

  45. Reuderink, B., Mühl, C., Poel, M.: Valence, arousal and dominance in the EEG during game play. Int. J. Auton Adapt. Commun. Syst. 6(1), 45–62 (2013)

    Article  Google Scholar 

  46. Sunstein, C.R.: Nudging: a very short guide. In: The Handbook of Privacy Studies, pp. 173–180. Amsterdam University Press (2018)

    Google Scholar 

  47. Swann, C., Piggott, D., Schweickle, M., Vella, S.A.: A review of scientific progress in flow in sport and exercise: normal science, crisis, and a progressive shift. J. Appl. Sport Psychol. 30(3), 249–271 (2018)

    Article  Google Scholar 

  48. Tang, Y.Y., Posner, M.I.: Attention training and attention state training. Trends Cogn. Sci. 13(5), 222–227 (2009)

    Article  Google Scholar 

  49. Human Resources Research Team: Redesigning work for the hybrid world, April 2021. https://www.gartner.com/en/documents/4001104/redesigning-work-for-the-hybrid-world. Accessed 03 Nov 2020

  50. Teplan, M., Krakovská, A., Špajdel, M.: Spectral EEG features of a short psycho-physiological relaxation. Measur. Sci. Rev. 14(4), 237–242 (2014)

    Article  Google Scholar 

  51. Thaler, R.H., Sunstein, C.R.: Nudge: Improving Decisions About Health, Wealth, and Happiness. Penguin (2009)

    Google Scholar 

  52. Tomarken, A.J., Davidson, R.J., Henriques, J.B.: Resting frontal brain asymmetry predicts affective responses to films. J. Pers. Soc. Psychol. 59(4), 791 (1990)

    Article  Google Scholar 

  53. Tripathi, S., Acharya, S., Sharma, R.D., Mittal, S., Bhattacharya, S.: Using deep and convolutional neural networks for accurate emotion classification on DEAP dataset. In: Twenty-Ninth IAAI Conference (2017)

    Google Scholar 

  54. Vaishya, R., Javaid, M., Khan, I.H., Haleem, A.: Artificial intelligence (AI) applications for COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 14(4), 337–339 (2020)

    Article  Google Scholar 

  55. Verganti, R., Vendraminelli, L., Iansiti, M.: Innovation and design in the age of artificial intelligence. J. Prod. Innov. Manag. 37(3), 212–227 (2020)

    Article  Google Scholar 

  56. Wilson, G.F., Russell, C.A.: Real-time assessment of mental workload using psychophysiological measures and artificial neural networks. Hum. Factors 45(4), 635–644 (2003)

    Article  Google Scholar 

  57. Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: EmotionMeter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. 49(3), 1110–1122 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy R. Weekes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weekes, T.R., Eskridge, T.C. (2022). Design Thinking the Human-AI Experience of Neurotechnology for Knowledge Workers. In: Kurosu, M., et al. HCI International 2022 - Late Breaking Papers. Multimodality in Advanced Interaction Environments. HCII 2022. Lecture Notes in Computer Science, vol 13519. Springer, Cham. https://doi.org/10.1007/978-3-031-17618-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17618-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17617-3

  • Online ISBN: 978-3-031-17618-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics