Skip to main content

Spatial and Timing Properties in Highway Traffic

  • Conference paper
  • First Online:
Theoretical Aspects of Computing – ICTAC 2022 (ICTAC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13572))

Included in the following conference series:

Abstract

We introduce Timed Multi-Lane Spatial Logic (TMLSL), a logic to express spatial and timing properties in highway traffic. For this purpose, we combine State-Clock Logic (SCL) and Multi-Lane Spatial Logic with Scopes (MLSLS), using MLSLS formulae as the propositions from which SCL formulae are built. SCL enables one to state through which phases a car has to pass when performing manoeuvres, like changing lanes. The phases themselves are described in the spatial logic MLSLS. Additionally, it is possible to express explicit timing constraints regarding the change of phases. Alongside the logic itself, we give a procedure to semi–decide whether there exists a run for a given traffic situation that satisfies a specification given in TMLSL.

This research was partially supported by the German Research Council (DFG) in the Research Training Group GRK 1765 SCARE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.rust-lang.org/.

References

  1. Hilscher, M., Linker, S., Olderog, E.-R., Ravn, A.P.: An abstract model for proving safety of multi-lane traffic manoeuvres. In: Qin, S., Qiu, Z. (eds.) ICFEM 2011. LNCS, vol. 6991, pp. 404–419. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24559-6_28

    Chapter  Google Scholar 

  2. Hilscher, M., Linker, S., Olderog, E.-R.: Proving safety of traffic manoeuvres on country roads. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods. LNCS, vol. 8051, pp. 196–212. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39698-4_12

    Chapter  MATH  Google Scholar 

  3. Linker, S., Hilscher, M.: Proof theory of a multi-lane spatial logic. In: Liu, Z., Woodcock, J., Zhu, H. (eds.) ICTAC 2013. LNCS, vol. 8049, pp. 231–248. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39718-9_14

    Chapter  MATH  Google Scholar 

  4. Ody, H.: Undecidability results for multi-lane spatial logic. In: Leucker, M., Rueda, C., Valencia, F.D. (eds.) ICTAC 2015. LNCS, vol. 9399, pp. 404–421. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25150-9_24

    Chapter  Google Scholar 

  5. Fränzle, M., Hansen, M.R., Ody, H.: No need knowing numerous neighbours - towards a realizable interpretation of MLSL. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 152–171. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_11

    Chapter  Google Scholar 

  6. Hilscher, M., Schwammberger, M.: An abstract model for proving safety of autonomous urban traffic. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 274–292. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_16

    Chapter  MATH  Google Scholar 

  7. Althoff, M., Maierhofer, S., Pek, C.: Provably-correct and comfortable adaptive cruise control. IEEE Trans. Intell. Veh. 6, 159–174 (2021)

    Article  Google Scholar 

  8. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  9. Loos, S.M., Platzer, A., Nistor, L.: Adaptive cruise control: hybrid, distributed, and now formally verified. In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 42–56. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21437-0_6

    Chapter  Google Scholar 

  10. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-Hall Inc, New Jersey (1996)

    MATH  Google Scholar 

  11. Ody, H.: Monitoring of traffic manoeuvres with imprecise information. Ph.D. thesis, University of Oldenburg, Germany (2020). https://oops.uni-oldenburg.de/4730

  12. Raskin, J.-F., Schobbens, P.-Y.: State clock logic: a decidable real-time logic. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0014711

    Chapter  Google Scholar 

  13. Pnueli, A.: The temporal logic of programs. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science. In: SFCS 1977, USA, pp. 46–57. IEEE Computer Society (1977)

    Google Scholar 

  14. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic Computation, pp. 24–84. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-9459-1_3

    Chapter  Google Scholar 

  15. Bradley, A.R., Manna, Z.: The Calculus of Computation - Decision Procedures with Applications to Verification. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74113-8

    Book  MATH  Google Scholar 

  16. Raskin, J., Schobbens, P.: The logic of event clocks - decidability, complexity and expressiveness. J. Autom. Lang. Comb. 4, 247–282 (1999)

    MathSciNet  MATH  Google Scholar 

  17. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  18. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model. Comput. 1, 209–236 (2007)

    MATH  Google Scholar 

  19. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. 3, 30–50 (2000)

    Article  Google Scholar 

  20. Falcone, Y.: You should better enforce than verify. In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 89–105. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Bischopink .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bischopink, C., Olderog, ER. (2022). Spatial and Timing Properties in Highway Traffic. In: Seidl, H., Liu, Z., Pasareanu, C.S. (eds) Theoretical Aspects of Computing – ICTAC 2022. ICTAC 2022. Lecture Notes in Computer Science, vol 13572. Springer, Cham. https://doi.org/10.1007/978-3-031-17715-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17715-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17714-9

  • Online ISBN: 978-3-031-17715-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics