Skip to main content

An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13506))

Included in the following conference series:

Abstract

We introduce a distance-based neural network model for regression, in which prediction uncertainty is quantified by a belief function on the real line. The model interprets the distances of the input vector to prototypes as pieces of evidence represented by Gaussian random fuzzy numbers (GRFN’s) and combined by the generalized product intersection rule, an operator that extends Dempster’s rule to random fuzzy sets. The network output is a GRFN that can be summarized by three numbers characterizing the most plausible predicted value, variability around this value, and epistemic uncertainty. Experiments with real datasets demonstrate the very good performance of the method as compared to state-of-the-art evidential and statistical learning algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Available at https://archive.ics.uci.edu/ml/.

References

  1. Cella, L., Martin, R.: Valid inferential models for prediction in supervised learning problems. Researchers. One (2021). https://researchers.one/articles/21.12.00002v2

  2. Couso, I., Sánchez, L.: Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets Syst. 165(1), 1–23 (2011)

    Article  MathSciNet  Google Scholar 

  3. Denœux, T.: A \(k\)-nearest neighbor classification rule based on dempster-shafer theory. IEEE Trans. Syst. Man Cybern. 25(05), 804–813 (1995)

    Google Scholar 

  4. Denœux, T.: Function approximation in the framework of evidence theory: a connectionist approach. In: Proceedings of the 1997 International Conference on Neural Networks (ICNN 1997), vol. 1, pp. 199–203, Houston, June 1997 . IEEE (1997)

    Google Scholar 

  5. Denœux, T.: A neural network classifier based on dempster-shafer theory. IEEE Trans. Syst. Man Cybern. A 30(2), 131–150 (2000)

    Article  Google Scholar 

  6. Denœux, T.: Belief functions induced by random fuzzy sets: A general framework for representing uncertain and fuzzy evidence. Fuzzy Sets Syst. 424, 63–91 (2021)

    Article  MathSciNet  Google Scholar 

  7. Denœux, T., Dubois, D., Prade, H.: Representations of uncertainty in artificial intelligence: probability and possibility. In: Marquis, P., Papini, O., Prade, H. (eds.) A Guided Tour of Artificial Intelligence Research, pp. 69–117. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-06164-7_3

    Chapter  Google Scholar 

  8. Denœux, T.: Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets Syst. (2022). https://doi.org/10.1016/j.fss.2022.06.004

  9. Huang, L., Ruan, S., Decazes, P., Denoeux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. Int. J. Approx. Reason. 149, 39–60 (2022)

    Article  Google Scholar 

  10. Kuhn, M.: Caret: classification and regression training (2021). R package version 6.0-90. https://CRAN.R-project.org/package=caret

  11. Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531–542 (1978)

    Article  MathSciNet  Google Scholar 

  12. Petit-Renaud, S., Denœux, T.: Handling different forms of uncertainty in regression analysis: a fuzzy belief structure approach. In: Hunter, A., Parsons, S. (eds.) ECSQARU 1999. LNCS (LNAI), vol. 1638, pp. 340–351. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48747-6_31

    Chapter  Google Scholar 

  13. Petit-Renaud, S., Denœux, T.: Nonparametric regression analysis of uncertain and imprecise data using belief functions. Int. J. Approximate Reasoning 35(1), 1–28 (2004)

    Article  MathSciNet  Google Scholar 

  14. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    Book  Google Scholar 

  15. Tong, Z., Xu, P., Denœux, T.: An evidential classifier based on dempster-shafer theory and deep learning. Neurocomputing 450, 275–293 (2021)

    Article  Google Scholar 

  16. Tong, Z., Xu, P., Denœux, T.: Evidential fully convolutional network for semantic segmentation. Appl. Intell. 51, 6376–6399 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Denœux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denœux, T. (2022). An Evidential Neural Network Model for Regression Based on Random Fuzzy Numbers. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds) Belief Functions: Theory and Applications. BELIEF 2022. Lecture Notes in Computer Science(), vol 13506. Springer, Cham. https://doi.org/10.1007/978-3-031-17801-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17801-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17800-9

  • Online ISBN: 978-3-031-17801-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics