Skip to main content

Bi2E: Bidirectional Knowledge Graph Embeddings Based on Subject-Object Feature Spaces

  • Conference paper
  • First Online:
Cooperative Information Systems (CoopIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13591))

Included in the following conference series:

  • 537 Accesses

Abstract

In high connectivity knowledge graph, distance based knowledge graph embedding methods show promising performance on link prediction task, and are capable of encoding complex relations and key relation patterns. However, the existing methods fail to achieve excellent results in knowledge graph with poor context structure information. To mitigate this problem, we propose Bi2E, a bidirectional model based on subject-object feature spaces. To enhance the efficiency of data utilization and perceive more potential semantic links, we utilize the bidirectionality of relation to model from both forward and reverse directions. And Bi2E represents triples in the subject-object feature spaces, which enables it to capture richer feature information from rare data. In addition, Bi2E employs adaptive margin \(\gamma \) which makes embedded representation more flexible by only using a small amount of feature information. Experiments on link prediction benchmarks demonstrate the proposed key capabilities of Bi2E. Moreover, we set a new state-of-the-art on two low connectivity knowledge graph benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miller, G.A.: Wordnet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  2. Bollacker, K., Evans, C., Paritosh, P., Sturge, T., Taylor, J.: Freebase: a collaboratively created graph database for structuring human knowledge. In: Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 1247–1250 (2008)

    Google Scholar 

  3. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: Proceedings of the 16th International Conference on World Wide Web, pp. 697–706. ACM (2007)

    Google Scholar 

  4. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised embedding models. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_11

    Chapter  Google Scholar 

  5. Zhang, F., Yuan, N.J., Lian, D., Xie, X., Ma, W.-Y.: Collaborative knowledge base embedding for recommender systems. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 353–362. ACM (2016)

    Google Scholar 

  6. Yang, B., Mitchell, T.: Leveraging knowledge bases in LSTMS for improving machine reading. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), vol. 1, pp. 1436–1446 (2017)

    Google Scholar 

  7. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, pp. 2787–2795 (2013)

    Google Scholar 

  8. Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  9. Teo, T.W., Choy, B.H.: In: Tan, O.S., Low, E.L., Tay, E.G., Yan, Y.K. (eds.) Singapore Math and Science Education Innovation. ETLPPSIP, vol. 1, pp. 43–59. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-1357-9_3

    Chapter  Google Scholar 

  10. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 687–696 (2015)

    Google Scholar 

  12. Wang, Z., Zhang, J., Feng, J., Chen, Z.. Knowledge graph embedding by translating on hyperplanes. In: Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  13. Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. AAAI 16, 985–991 (2016)

    Google Scholar 

  14. Tang, Y., Huang, J., Wang, G., He, X., Zhou, B.: Orthogonal relation transforms with graph context modeling for knowledge graph embedding. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (2019)

    Google Scholar 

  15. Nickel, M., Tresp, V., Kriegel, H.-P.: A three-way model for collective learning on multi-relational data. ICML 11, 809–816 (2011)

    Google Scholar 

  16. Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  17. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  18. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning, pp. 2071–2080 (2016)

    Google Scholar 

  19. Zhang, S., Tay, Y., Yao, L., Liu, Q.: Quaternion knowledge graph embedding. arXiv preprint arXiv:1904.10281 (2019)

  20. Kazemi, S.M., Poole, D.: Simple embedding for link prediction in knowledge graphs. In: Advances in Neural Information Processing Systems, pp. 4284–4295 (2018)

    Google Scholar 

  21. Wang, Y., Gemulla, R., Li, H.: On multi-relational link prediction with bilinear models (2018)

    Google Scholar 

  22. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2D knowledge graph embeddings. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  23. Vashishth, S., Sanyal, S., Nitin, V., Agrawal, N., Talukdar, P.: Interacte: improving convolution-based knowledge graph embeddings by increasing feature interactions. In: Proceedings of the AAAI Conference on Artificial Intelligence (2020)

    Google Scholar 

  24. Shang, C., Tang, Y., Huang, J., Bi, J., He, X., Zhou, B.: End-to-end structure-aware convolutional networks for knowledge base completion. In: Proceedings of the AAAI Conference on Artificial Intelligence (2019)

    Google Scholar 

  25. Vashishth, S., Sanyal, S., Nitin, V., Talukdar, P.: Composition-based multi-relational graph convolutional networks. In: 8th International Conference on Learning Representations (2020)

    Google Scholar 

  26. Akrami, F., Saeef, M.S., Zhang, Q., Hu, W., Li, C.: Realistic re-evaluation of knowledge graph completion methods: an experimental study. In: Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data (2020)

    Google Scholar 

  27. Mahdisoltani, F., Biega, J., Suchanek, F.M. Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015)

    Google Scholar 

  28. Toutanova, K., Chen, D.: Observed versus latent features for knowledge base and text inference. In: Proceedings of the 3rd Workshop on Continuous Vector Space Models and their Compositionality, pp. 57–66 (2015)

    Google Scholar 

  29. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  30. Peng, X., Chen, G., Lin, C., Stevenson, M.: Highly efficient knowledge graph embedding learning with orthogonal procrustes analysis. In: Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (2021)

    Google Scholar 

  31. Kadlec, R., Bajgar, O., Kleindienst, J.: Knowledge base completion: baselines strike back. arXiv preprint arXiv:1705.10744 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z., Li, X., Guo, Z. (2022). Bi2E: Bidirectional Knowledge Graph Embeddings Based on Subject-Object Feature Spaces. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2022. Lecture Notes in Computer Science, vol 13591. Springer, Cham. https://doi.org/10.1007/978-3-031-17834-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17834-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17833-7

  • Online ISBN: 978-3-031-17834-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics