Abstract
Structural network analysis retrieves the holistic patterns of interactions among network instances. Due to the unprecedented growth of data availability, it is time to take advantage of Machine Learning to integrate the outcome of the structural analysis with better predictions on the upcoming states of large networks. Concerning the existing challenges of adopting methods embracing multi-dimensional, multi-task, transparent representations within incremental procedures, in our recent study, we proposed the AVPRA algorithm. It works as an embedder of both the network structure and domain-specific features making the aforementioned challenges feasible to address. In this paper, we elaborate on the validation of AVPRA by adopting it in multiple downstream Machine Learning tasks on the Twitter network of the Italian Parliament. Comparing the outcome with state-of-the-art algorithms of graph embedding, the capability of AVPRA in retaining either network structure properties or domain-specific features of the nodes is promising. In addition, the method is incremental and transparent.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In particular we used the friendship relation accessible from Twitter API.
- 2.
- 3.
References
Abbas, A.M.: Social network analysis using deep learning: applications and schemes. Soc. Netw. Anal. Min. 11(1), 1–21 (2021)
Azaouzi, M., Romdhane, L.B.: An evidential influence-based label propagation algorithm for distributed community detection in social networks. Proc. Comput. Sci. 112, 407–416 (2017)
Azzini, A., et al.: Advances in data management in the big data era. In: Goedicke, M., Neuhold, E., Rannenberg, K. (eds.) Advancing Research in Information and Communication Technology. IAICT, vol. 600, pp. 99–126. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81701-5_4
Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: Bonato, A., Chung, F.R.K. (eds.) WAW 2007. LNCS, vol. 4863, pp. 124–137. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77004-6_10
Bellandi, V., Ceravolo, P., Maghool, S., Siccardi, S.: Toward a general framework for multimodal big data analysis. Big Data (2022)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008 (2008)
Bonner, S., Brennan, J., Kureshi, I., Theodoropoulos, G., McGough, A.S., Obara, B.: Evaluating the quality of graph embeddings via topological feature reconstruction. In: 2017 IEEE International Conference on Big Data (Big Data), pp. 2691–2700 (2017). https://doi.org/10.1109/BigData.2017.8258232
Borgatti, S.P., Halgin, D.S.: On network theory. Organ. Sci. 22(5), 1168–1181 (2011)
Cao, S., Lu, W., Xu, Q.: Grarep: learning graph representations with global structural information. In: International Conference on Information and Knowledge Management (CIKM), pp. 891–900 (2015)
Chiesi, A.: Network analysis. In: Smelser, N.J., Baltes, P.B. (eds.) International Encyclopedia of the Social & Behavioral Sciences, Pergamon, Oxford, pp. 10499–10502 (2001). https://doi.org/10.1016/B0-08-043076-7/04211-X,https://www.sciencedirect.com/science/article/pii/B008043076704211X
Emirbayer, M., Goodwin, J.: Network analysis, culture, and the problem of agency. Am. J. Sociol. 99(6), 1411–1454 (1994)
Grando, F., Granville, L.Z., Lamb, L.C.: Machine learning in network centrality measures: tutorial and outlook. ACM Comput. Surv. (CSUR) 51(5), 1–32 (2018)
Grando, F., Lamb, L.C.: On approximating networks centrality measures via neural learning algorithms. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 551–557. IEEE (2016)
Gregory, S.: Finding overlapping communities in networks by label propagation. New J. Phys. 12(10), 103018 (2010)
Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 855–864 (2016)
Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Conference on Advances in Neural Information Processing Systems (NIPS), pp. 1024–1034 (2017)
Hasan, M.A., Zaki, M.J.: A survey of link prediction in social networks. In: Social network data analytics, pp. 243–275. Springer (2011). https://doi.org/10.1007/978-1-4419-8462-3_9
Jokar, E., Mosleh, M.: Community detection in social networks based on improved label propagation algorithm and balanced link density. Phys. Lett. A 383(8), 718–727 (2019)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)
Li, Q., Zhou, T., Lü, L., Chen, D.: Identifying influential spreaders by weighted leaderrank. Phys. A 404, 47–55 (2014)
Lim, M., Abdullah, A., Jhanjhi, N., Khan, M.K.: Situation-aware deep reinforcement learning link prediction model for evolving criminal networks. IEEE Access 8, 16550–16559 (2019)
Martínez, V., Berzal, F., Cubero, J.C.: A survey of link prediction in complex networks. ACM Comput. Surv. (CSUR) 49(4), 1–33 (2016)
McDaid, A.F., Greene, D., Hurley, N.: Normalized mutual information to evaluate overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011)
Mendonça, M.R., Barreto, A.M., Ziviani, A.: Approximating network centrality measures using node embedding and machine learning. IEEE Trans. Netw. Sci. Eng. 8(1), 220–230 (2020)
Nurek, M., Michalski, R.: Combining machine learning and social network analysis to reveal the organizational structures. Appl. Sci. 10(5), 1699 (2020)
Opitz, J., Burst, S.: Macro f1 and macro f1. arXiv preprint arXiv:1911.03347 (2019)
Ou, M., Cui, P., Pei, J., Zhang, Z., Zhu, W.: Asymmetric transitivity preserving graph embedding. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 1105–1114 (2016)
Palmonari, M., Minervini, P.: Knowledge graph embeddings and explainable ai. Knowl. Graphs Explain. Artifi. Intell. Found. Appli. Challenges 47, 49 (2020)
Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), pp. 701–710 (2014)
Perozzi, B., Kulkarni, V., Chen, H., Skiena, S.: Don’t walk, skip! online learning of multi-scale network embeddings. In: International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp. 258–265 (2017)
Rossi, A., Barbosa, D., Firmani, D., Matinata, A., Merialdo, P.: Knowledge graph embedding for link prediction: a comparative analysis. ACM Trans. Knowl. Discovery Data (TKDD) 15(2), 1–49 (2021)
Rosvall, M., Bergstrom, C.T.: Maps of information flow reveal community structure in complex networks. arXiv preprint physics.soc-ph/0707.0609 (2007)
Salehi Rizi, F., Granitzer, M.: Properties of vector embeddings in social networks. Algorithms 10(4), 109 (2017)
Silva, T.C., Zhao, L.: Machine Learning in Complex Networks. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-17290-3
Sun, H., Huang, J., Zhong, X., Liu, K., Zou, J., Song, Q.: Label propagation with-degree neighborhood impact for network community detection. Comput. Intell. Neurosci. 2014, 130689 (2014)
Traag, V.A., Waltman, L., Van Eck, N.J.: From louvain to leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 1–12 (2019)
Bellandi, V., Ceravolo, P., Damiani, E., Maghool, S.: Agent-based vector- label propagation for explaining social network structures. CCIS, vol. 1593 (2022). https://doi.org/10.1007/978-3-031-07920-7_24
Wang, X., Cui, P., Wang, J., Pei, J., Zhu, W., Yang, S.: Community preserving network embedding. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)
Xie, J., Szymanski, B.K., Liu, X.: Slpa: uncovering overlapping communities in social networks via a speaker-listener interaction dynamic process. In: 2011 IEEE 11th International Conference on Data Mining Workshops, pp. 344–349. IEEE (2011)
Xing, Y., Meng, F., Zhou, Y., Zhu, M., Shi, M., Sun, G.: A node influence based label propagation algorithm for community detection in networks. Sci. World J. 2014, 627581 (2014)
Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)
Zhu, X., Ghahramani, Z.: Learning from labeled and unlabeled data with label propagation (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bellandi, V., Damiani, E., Ghirimoldi, V., Maghool, S., Negri, F. (2022). Validating Vector-Label Propagation for Graph Embedding. In: Sellami, M., Ceravolo, P., Reijers, H.A., Gaaloul, W., Panetto, H. (eds) Cooperative Information Systems. CoopIS 2022. Lecture Notes in Computer Science, vol 13591. Springer, Cham. https://doi.org/10.1007/978-3-031-17834-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-17834-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17833-7
Online ISBN: 978-3-031-17834-4
eBook Packages: Computer ScienceComputer Science (R0)