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Abstract. Structural network analysis retrieves the holistic patterns of
interactions among network instances. Due to the unprecedented growth
of data availability, it is time to take advantage of Machine Learning
to integrate the outcome of the structural analysis with better predic-
tions on the upcoming states of large networks. Concerning the existing
challenges of adopting methods embracing multi-dimensional, multi-task,
transparent representations within incremental procedures, in our recent
study, we proposed the AVPRA algorithm. It works as an embedder
of both the network structure and domain-specific features making the
aforementioned challenges feasible to address. In this paper, we elabo-
rate on the validation of AVPRA by adopting it in multiple downstream
Machine Learning tasks on the Twitter network of the Italian Parlia-
ment. Comparing the outcome with state-of-the-art algorithms of graph
embedding, the capability of AVPRA in retaining either network struc-
ture properties or domain-specific features of the nodes is promising. In
addition, the method is incremental and transparent.

Keywords: Vector-label propagation · Social network analysis ·
Graph embedding

1 Introduction

Network analysis comprises powerful methods to study the relationship between
the elements of a network, with applications to any domain where the structure
of the network can reveal interaction patterns or emerging states [10]. Most of
the applied algorithms exploit graph theory to measure specific properties of
the overall network, the subgraphs composing it, or the individual nodes. These
measures have been successfully applied to predict the evolution of specific states
of the network or its individual nodes [8]. Integrating the results of network
analysis into downstream Machine Learning (ML) has become an interesting
research topic due to the unprecedented growth of data availability. Leveraging
ML algorithms for studying complex networks, containing large number of nodes
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and edges with various properties, have made a huge step toward analysing and
predicting the behavior of a system [34]. However, specific challenges have to be
addressed to realize this integration.

The metrics from network analysis can be included in the feature space
assigned to a learning procedure as any other descriptor, accounting for the
structural properties of the elements of the system. Data fusion techniques offer
multiple strategies to unify them with descriptors from other sources [21,25].
Nevertheless this approach suffers from the structural determinism of network
measures i.e. results are determined by the network structure, only disregarding
the role of others features characterizing individual elements in the domain [11].
For example, nodes from different communities can be represented by similar
centrality values if they have similar structural relationships within the commu-
nity. Thus, they may fall close in the feature space feeding a ML algorithm, even
if belonging to different communities. An alternative strategy is using graph
embedding algorithms to represent the network structure in low dimensional
space while preserving the distances between the elements in the network [33].
These approaches generate a latent space losing a transparent connection to the
original network space, thus, even if the distances between nodes are preserved,
it is hard to explain the reasons motivating an interspace between elements.
Another strategy is using graph neural networks to directly encode the network
structure into the architecture of the neural network [1]. This method implies
the neural network is designed to address a specific task. Updates in the network
structure require re-initialising the neural network and the results obtained can
be hardly incrementally integrated with results obtained in the past. Exploring
a system through networks requires tools reflecting the networks features in an
interpretable manner. Also, the nodes of a network often refer to dynamically
changing instances. Analysing and predicting the dynamics of a network demand
to measure its structural properties as well as the full picture of domain-specific
features of nodes. In other words, the current methods are structural determined
and non transparent, task specific and non incremental.

In our previous paper, addressing this matter, we proposed the agent-based
Vector-label PRopagation Algorithm (AVPRA) [37] for explainable exploration
through the network’s feature space. Using this algorithm results in extracting
the d-dimensional weighted vectors of features in the feature space rather than
latent space, which makes them explainable. Each element of these vectors con-
veys information on how features formed the current status of instances in the
network. In this work, we aim at verifying the applicability of AVPRA to differ-
ent predictive tasks using established ML methods. More specifically, in Sect. 2
we discuss the related works, in Sect. 3 we present the AVPRA algorithm and
characterize its properties, in Sect. 4 we present the experimental validation we
conducted, in Sect. 5 we discuss the results achieved, and in Sect. 6 we go to the
conclusion.
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2 Related Works

2.1 Vector-Label Propagation

The original idea of Label Propagation was proposed in 2002, as an iterative
procedure to augment data before feeding a classification task [42]. Applying
this algorithm, the unlabeled nodes of the network adopt the label of the major-
ity of nodes in their neighborhood. Considering that labels are deterministic
and discrete representations of nodes’ features by a single value, they are not
able to picture a holistic view of the network using information from different
sources. Therefore, the Vector-Label Propagation (VLP) algorithms are proposed
to encode the multiple features a node could convey in a dynamic system into
a vector of labels. In these algorithms, the most weighted labels or combination
of all labels of the vector-labels (VL) are utilized to get the most influential
features for the given node or to find out the overlapping communities it belongs
to [14]. For example, to identify a list of songs to recommend to a user based on
the most favored in its neighborhood.

The belonging coefficient of a label is a parameterized measurement com-
puted aggregating the vector-labels in the neighborhood to take account of the
influence a label has on the node based on how frequently it appears in the neigh-
borhood. The aggregation procedure acquiring the neighborhood features, a.k.a
update rule, does not necessarily follow the majority rule. A common complexity
may arise when multiple labels have equal frequency hence a random selection
should be operated. This random choice has been identified as a major source
of instability, since different executions of the algorithm may result in different
label assignments. To overcome this issue multiple variants of the update rule
have been proposed [18,20,35,39–41], using the structural feature of nodes to
reduce this type of instability. Primarily, these variants identify the most influ-
ential nodes to decide the order in which nodes are updated or the initialization
of the labels in the network [2]. Overall, the VL approach helps in reducing
the instability of LP algorithms as all the labels in the neighborhood can be
accounted for. It also permits considering non-structural features to describe
node properties in a holistic multidimensional mode.

2.2 Graph Embedding

Graph Embedding (GE) in general terms is a data preparation procedure map-
ping the existing information of a network as much as possible in a unified usable
data format to input ML algorithms for implementing several downstream tasks.
Many algorithms such as Matrix factorization-based [9,27], Random walk-based
[15,29,30], and Neural network-based algorithms [16,19] are developed in order
to retrieve as much as possible the properties of the network and map them
in a latent space [3]. Most of these algorithms have been however criticized for
adding a level of complexity to ML results [5]. The latent space they provide
implies explainability issues, therefore some post-hoc interpretative analysis is
needed [28].
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By AVPRA, we propose to adopt a VLP algorithm as a mapping function
where the belonging coefficients capture the diffusibility of the labels into nodes,
depending on the distances from the source of the features and their frequency.
To encode the diffusibility of all the features in the network, the vector-label
includes all of them in vectors of fixed length, while the belonging coefficient
accounts for their incidence in the node neighborhood. A big advantage of this
approach is that, at the end of the propagation procedure, all the nodes of the
network can be positioned in the same feature space and the output data format
is suitable for implementing multiple ML tasks.

3 Methodology

We first, briefly, introduce the AVPRA algorithm characterizing the procedures
it activates in exploring the space of a network and in encoding the collected
information into VL.

3.1 AVPRA Model Specification

Considering the rationale behind VLP algorithms in preserving information on
the features of individual nodes, we proposed an agent-based model where nodes
have memory about received information from different sources and limited ratio-
nality for updating its vector label coefficients [37].

The updating rule is realized by an aggregation function unifying the received
information from neighborhood. An example of such function is represented in
Eq. 1. At each time step t, b(l), the belonging coefficient of an element of the
VLi[l](t), can be updated by aggregating the k neighbors’ VLj∈Γ(i)[l](t− 1).

VLi[l](t) = w1VLi[l](t) + w2

∑

j∈Γ(i)

VLj∈Γ(i)[l](t− 1) (1)

where w1 and w2 are the weight of current assigned labels l of node i and
the weight of the neighbors Γ(i), respectively. In a basic scenario, w1 = w2 =

1
Γ(i)+1 = 1

k+1 , hence, for all the common elements in VLi and VLj vectors, the
values of the given elements l increase unconditionally and will be normalized to 1
by the inverse of the cardinality of Γ(i). All the VLs get updated synchronously,
to avoid conflicts in the order of update, and reflect all the changes received at
the same iteration by all nodes. Following the dynamical changes of VLs, we
witnessed the propagation procedure to reach the termination point, where the
updated value of each element is below a certain threshold defined by the user,
after a few number of iterations which is about the average path length of the
network [37].

Our algorithm mechanism helps in discarding couple of instabilities caused
by random selection and ordering of updates. The former is addressed by the fact
that we keep all the coefficient labels up to the termination point, while the latter
is addressed by averaging over a number of executions starting with different
initial seeds, i.e. the nodes settled as starting points of the propagation process.
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As an illustrative example of our proposal, Fig. 1 proposes a schematic network
containing three agents with three initial distinct features red (R), yellow (Y) and
green (G). The vector-label for agent i at time t−1 is as {R, Y,G}i = {l1, l2, l3}i,
containing the weights of all unique features. The updated vector-label at time t
is created as a combination of its neighbors’ vector-labels at time t−1, according
to the update rule.

Fig. 1. The schematic view of the AVPRA algorithm implemented on a small network
containing three nodes. In the first and second row, the network is fully connected and
the states of nodes are depicted by colors; Red, Green, and Yellow. In each section of
the picture, the initial state at time T = t − 1 is followed by evolved state at T = t
according to a propagation rule. In the third row, the connections have changed and
subsequently the following state has been modified. (Color figure online)

3.2 Properties of the AVPRA Algorithm

The AVPRA algorithm is an agent-based iterative procedure where agents
progress the propagation acting in response to the VLs they access in their neigh-
borhood. To avoid conflicts in propagating the updates, all agents get updated
simultaneously at each iteration. The updating rule defines the aggregation func-
tion to apply in updating VLs. To initialize the procedure, some of the agents
of the network must be assigned to valued VLs but not all of them have to start
with an initial valued VL. The termination of the AVPRA algorithm is achieved
when the system reaches an iteration s where VLs are stationary. This implies,
that the variations on the belonging coefficient of all labels must be less than a
defined value p. We name p the negligibly threshold. Experimental results have
shown this threshold can be achieved with a number of iterations that is close
to the average path length of the network [37].
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These properties of the algorithm make it incremental, i.e., updates in the
network structure do not require re-execute the procedure but can be applied first
locally and then propagated in the other nodes by a few numbers of iterations.
This makes the AVPRA algorithm more ductile to integrate into downstream
ML pipelines.

3.3 Validating the Representing Model

To verify the quality of the representation achieved by the vectors obtained using
AVPRA we exploit a comparative approach. The idea is that high-quality graph
embeddings should be able to capture key parts of the network structure [7], thus
can predict common measures of the network, current or future states. We then
compare the accuracy achieved by supervised and unsupervised ML algorithms
in predicting these measures and states encoding network nodes using AVPRA
VLs or using other state-of-the-art graph embedding methods. Our tests aim
to address different relevant analytical tasks in network analysis, namely com-
munity and sub-community detection (Sect. 4.1 and 5.2) clustering (Sect. 4.2)
link prediction (Sect. 4.3) measuring node centrality (Sect. 4.4) and label-drift
detection (Sect. 4.5).

In addition to an assessment of the accuracy, our experiments underline capa-
bilities provided by the AVPRA VLs not supported by other embedding meth-
ods. Encoding nodes into a feature space that is provided by the union of the
features of the nodes in the network, AVPRA keeps domain properties transpar-
ent to data analysis. To let emerge these aspects, instead of adopting a standard
dataset, used in research settings, we preferred to refer to a real-world dataset,
where domain-related aspects can emerge.

3.4 Populite Data Set

In a collaborative study funded by the University of Milan, involving the Depart-
ment of Social and Political Sciences and the Department of Computer Science,
the Populite project has been launched. The aim is to study the behavioral
patterns of Italian politicians on social media. A key aspect of this study is to
depict the communities and sub-communities that the communication flow and
the social network among Italian politicians on social media create. By study-
ing the inter and intra-cohesion of these communities multiple interesting ques-
tions can be answered. Which are the political groups that interact the most,
which ones are partitioned into sub-communities (i.e., intra-party factions), and
to which other political groups these sub-communities are connected? Individual
links can also be analyzed. Is there reciprocity between parliamentarians? Which
ones are similar, based on their “neighborhood”?
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Considering the Twitter social network, its API can be used to retrieve and
analyze the social network and the communication flow of a set of users. This
API provides the access to different resources including: Tweets, Users, Lists,
Trends, Media and Places. The Political Science Department provided the list
of parliamentarians, deputies and senators, and other relevant political actors in
Italy. With this information in hand 41615 tweets were downloaded, in the period
between January 2020 and February 2022. Information about the membership
of the analyzed actors in political groups was retrieved using the open data of
the Italian chamber and senate and adjusted manually for those active actors
not titled of a seat in the parliament. Data were stored in a graph database
to aggregate them and execute the required queries. For example, the social
network of the politicians was created by using the friendship relation among
Twitter users and extracted as the edge list matrix, to input network analysis
algorithms.

4 Experimental Results

We proceed with evaluating the AVPRA outcome in implementing some down-
stream ML tasks exploring the Populite data set. For each task, the accuracy and
execution run time are compared with some state-of-the-art algorithms, namely,
Deepwalk [29], Node2vec [15], and M-NMF[38].

4.1 Community Detection

In network analysis, communities reveal the structural and functional properties
of groups of nodes. Even though there is valuable literature on community detec-
tion algorithms, they mostly focus on the structural properties of the networks.
In the other words, the fact that each member may be characterized by various
domain-specific features toward different communities is not exploited.

In traditional approaches, the community detection task is based on the
modularity maximization problem. Modularity measures the strength of division
of a network into modules, i.e. strongly connected components. To address this
problem, some repetitive steps take place in forming/deforming the possible
partitions in the network and finding the one which results in the maximum
value of modularity [6]. Among the common algorithms, the so-called Leiden
community detection proves that the connected communities and all subsets of
all partitions are locally optimally assigned [36].

Considering the Twitter connections1 of the Italian parliament as a directed
network, we take the detected communities by Leiden algorithm as ground truth
labels. Leveraging these labels we run a Random Forest (RF) classifier in order to
evaluate how the vectors resulting from running AVPRA or other graph embed-
ding methods can capture the structural properties of the network similarly to
the Leiden algorithm. Table 1 presents the F1 scores and the execution time for

1 In particular we used the friendship relation accessible from Twitter API.
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this task, comparing the AVPRA vector labels with other algorithms embedded
vectors. AVPRA MW and AVPRA 10 MW are two derivatives of the AVPRA
vector labels where a limited number of labels is taken into account. The former
refers to the most weighted label, the latter to the ten most weighted labels.
In the case of multi-class classification, some averaging metrics for F1 scores
are used in the classification report. A macro-average will compute the metric
independently for each class and then take the average hence treating all classes
equally, whereas a micro-average will aggregate the contributions of all classes
to compute the average metric. In the case of an equal number of samples for
each class, macro and micro averaging will result in the same score [26]. For
those algorithms with hyperparameters in the mapping function, the mean and
standard deviation of F1 scores are calculated.

Table 1. The evaluation of AVPRA used for the community detection task. A RF
classifier is trained on the 80% of VLs with the Leiden communities labels and tested
on the 20% calculating the F1 score.

Community detection (mean± std)

Embedding algorithms F1 micro F1 macro Execution time(s)

AVPRA 0.993464 0.993073 3.768

AVPRA MW 0.967320 0.966128 1.879

AVPRA 10MW 0.967320 0.967105 0.627

DeepWalk 0.975163 ± 0.01164 0.97322 ± 0.01219 3.545

Node2vec 0.972222 ± 0.0119 0.971005 ± 0.1198 11.681

M-NMF 0.972549 ± 0.01503 0.971930 ± 0.0146 39.003/18.921

4.2 Clustering

Continuing the evaluation of the representation power of the AVPRA VLs, an
unsupervised task is studied. In particular, we consider the capabilities of clus-
tering techniques in grouping similar instances. A number of clusters equal to
the number of partitions proposed by the Leiden community detection algo-
rithm is formed out of the VLs by AVPRA and, embedded vectors by Deepwalk,
Node2vec, and M-NMF. In the evaluation of unsupervised tasks, Normalized
Mutual Information (NMI) is a measure used to evaluate network partitioning
performed by community detection algorithms. The basic idea of this metric
represents the amount of retrieved information from one distribution regarding
the second one [23]. Spectral, Kmeans, and Agglomerative Clustering algorithms
are applied to the Populite network, and the calculated NMI for each of these
algorithms on embedding methods is presented in Table 2.
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Table 2. The Normalized Mutual Information, comparing the clustered embedded
vectors resulted by one clustering algorithm.

NMI (mean± std)

Algorithm Spectral clustering Kmeans Clustering Agglomerative Clustering

AVPRA 0.892796 0.883197 0.882575

DeepWalk 0.903192 ± 0.043 0.926282 ± 0.033 0.867466 ± 0.028

Node2vec 0.926852±0.009 0.932014±0.011 0.872850 ± 0.012

M-NMF 0.86433 ± 0.055 0.867234 ± 0.048 0.845866 ± 0.044

4.3 Link Prediction

The link prediction problem mainly refers to the evaluation of possible rela-
tions between two existing nodes in the network [17,22]. Often the problem
is addressed using a supervised learning approach, where a model is trained
based on the existing/corrupted links in the network [31]. In our experiments,
we adopted a direct evaluation approach. After getting the vectors by the com-
pared embedding algorithms, for each possible couple of nodes in the network
(each possible edge), we calculate the cosine similarity of their assigned vectors
in the mapping space. This way, for each node based on the maximum similarity
with other nodes, we predict the presence of the edge if the similarity value is
more than 0.5. After all, we evaluate the presence or absence of a predicted edge
based on the true edges in the reference network. Table 3 illustrates the results
achieved.

Table 3. The comparison of link prediction score using different embedding algorithms.

Link prediction (mean± std)

Embedding algorithms F1 micro Execution time(s)

AVPRA 0.77790 0.627

DeepWalk 0.745352 ± 0.0252 13.178

Node2vec 0.713398 ± 0.0159 11.967

M-NMF 0.741063 ± 0.0185 1.749

4.4 Centrality

Concerning the constant increasing size of network data, the calculation of some
structural properties, such as node centrality, has a high computational cost.
Some algorithms provide approximation solutions using sampling and calculate
the single-source shortest path for a given sample of nodes [4,24]. Even though
the accuracy of these algorithms is acceptable, the computational cost is still
difficult to manage [12]. Motivated by this discussion, as we find the AVPRA
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less computationally complex in comparison to other state-of-the-art algorithms,
we evaluated its capabilities in capturing the centrality of nodes.

For this purpose, using a standard SN analysis library2, we computed the
betweenness centrality of each node. Centrality measures are expressed as con-
tinuous values, some times normalized in the range [0, 1], while in order to train
a classifier we need discreet ground-truth labels. Witnessing the Populite het-
erogeneous structural characteristic, such as power-law degree centrality similar
to other SNs, we propose three approaches for categorizing the nodes according
to their betweenness values into different intervals:

– approach (a): Homogeneous intervals: the centrality values are divided by
intervals of 0.05 and nodes are categorized accordingly.

– approach (b): Heterogeneous intervals: 100 intervals between 0.0005 and
0.05, 5 intervals between 0.05 and 0.1, (0.1, 0.2], (0.2, 0.5], (0.5, 1].

– approach (c): Heterogeneous Decreasing intervals: [0, x], (x, 1.5x],
(1.5x, 1.5× 1.5×x], . . . , with x = 0.0001.

Following the three above-mentioned approaches, we adopt the obtained cat-
egories as the ground-truth labels. An RF classifier is then trained to predict
centrality categories values based on the vectors of various graph embedding
algorithms. The F1 scores of each algorithm in predicting the labels of the test
set are presented in Table 4 considering 80% of data set as train set and 20%
test set.

Table 4. The accuracy of learning Centrality of the Populite network leveraging the
VLs resulted by AVPRA for each node by a Random Forest Classifier. Using the three
categorization methods defined in Sect. 4.4, the values are reported by mean± std for
AVPRA, DeepWalk, Node2Vec and M-NMF algorithms.

Accuracy (mean± std)

Algorithm approach (a) approach (b) approach (c)

AVPRA 0.601307 0.594771 0.555

DeepWalk 0.4200 ± 0.051 0.5093 ± 0.033 0.3403 ± 0.063

Node2vec 0.4365 ± 0.039 0.5100 ± 0.038 0.3439 ± 0.057

M-NMF 0.3483 ± 0.052 0.4803 ± 0.030 0.2797 ± 0.042

4.5 Label-Drift Detection

In real world scenarios, both the structural properties of networks and the dis-
tribution of features in networks are constantly changing. The dynamic changes
in the patterns of connections among individuals can have major impacts on
the evolution of the network states and the communication flow. The VLP app-
roach can be effective in capturing these dynamic changes as it can consider the
2 https://networkx.org/.

https://networkx.org/
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variation of states due to diffusion and accumulation of features flowing through
links. For this reason, we explored the accuracy of a prediction model based on
the AVPRA VLs.

In the studied scenario a dynamic evolution of the system is due by the
changes in the membership of the political groups at the Parliament that the Ital-
ian Constitution considers a fundamental right of parliamentarians. The method
adopted to predict these changes is based on the idea of creating VLs for political
groups which is the mean of the VLs of the members of the group. If we call this
new vectors V Lp, the new group of a parliamentarian x, is the vector in V Lp

most similar to V Lx, where similarity is measured by cosine distance.
To test the outcome, we consider 24 different extractions of the Populite data

referring to each month in data set. For each time t, predict the new groups of
all the candidates whose group changed between extraction t and t + 1. The
calculated accuracy for each time period is presented in the Table 5, the average
prediction accuracy obtained is 0.64.

Table 5. Number of changes happened in the mentioned period of time and the accu-
racy of prediction by our algorithm

Prediction of changing the labels

Period Number of changes in the political groups Prediction accuracy

2020-01/2020-02 1 1

2020-02/2020-03 2 0.5

2020-03/2020-04 1 1

2020-04/2020-05 2 1

2020-05/2020-06 3 1

2020-06/2020-07 1 1

2020-07/2020-08 1 0

2020-08/2020-09 1 1

2020-09/2020-10 1 1

2020-10/2020-11 1 1

2020-11/2020-12 6 1

2020-12/2021-01 17 0.705882

2021-01/2021-02 4 1

2021-02/2021-03 23 0.956522

2021-03/2021-04 4 0.25

2021-04/2021-05 1 0

2021-05/2021-06 17 0.058824

2021-06/2021-07 1 0

2021-07/2021-08 2 0

2021-08/2021-09 0 –

2021-09/2021-10 2 0.5

2021-10/2021-11 0 –

2021-11/2021-12 1 0

Total period Mean number of drifts Mean accuracy

2020-01/2021-12 2.19047 0.641304
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5 Discussion

In this section, we discuss the results we achieved and underline the capabilities
of AVPRA in capturing both structural and domain-specific properties of the
network.

5.1 Structural Properties of the Network

The set of experiments we conducted on a variety of network analysis tasks
demonstrates the ability of AVPRA in capturing the structural properties of the
network. In community detection, Sect. 4.1, our algorithm ranked first, demon-
strating its ability to capture the network modularity calculated by the Leiden
algorithm. In clustering, Sect. 4.2, AVPRA performs in line with other graph
embedding algorithms, with variations depending on the clustering algorithm
used. In link prediction, Sect. 4.3, our embedder outperforms others using a
reduced execution time. AVPRA outperforms the state of the art also in mea-
suring node centrality, Sect. 4.4, a task recognized as difficult in the literature
for ML procedures while initially some neural network learning are required [13].
Finally, AVPRA is partially capable to detect label-drift detection, Sect. 4.5, a
problem that is clearly influenced by a variety of factors that are endogenous to
the communication network of the parliamentarians.

These results are achieved using an algorithm that is full transparent and
incremental. The features composing the AVPRA vectors are directly obtained
from the domain features and the addition of new features will not invalidate
the previous steps of the procedure. Considering the graph embedding algo-
rithms as the encoder of network features into a latent space, we would face
difficulties in retrieving some information such as the centrality of nodes using
the embedded vectors and information remains abstract and hard to interpret.
Graph embedding algorithms usually create vectors of a dimension of several
hundreds of latent features per node in the graph. While eigenvalue-based decom-
position methods give some formal guarantees on the retained network proper-
ties, random-walk-based methods are stochastic in nature and depend heavily
on hyper-parameter settings.

5.2 Domain-Specific Properties of the Network

One of the key capabilities of AVPRA is embedding the network structure
directly using domain-specific features. This offers great support during the inter-
pretation of the results. To illustrate the implications we developed an analysis
of the sub-communities in the network, showing the differences between the
analysis developed by AVPRA and other methods.

As we discussed in Sect. 4.1, community detection in network analysis is
highly relevant in realizing the properties of members based on the community
they are involved in. According to the homophily principle in social science, nodes
located in one community may have more common features, in other words,
nodes with similar features tend to create their communities. What is observed at
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the level of a network can be observed also at the level of its communities, where
the members of a given community tend to form groups with a higher number of
common interests or stronger affinity. Even though this important problem has
been explored in the literature using different approaches and terminologies, we
refer to it as sub-community detection. Getting this level of granularity reveals
the complexity in the structure of the network and can offer important insight
into the affinities shared by nodes in different communities.

Regarding a research question raised by Populite working group about the
identification of intra-party factions, we evaluate the AVPRA output vectors in
retaining the sub-communities of the network properties. In order to validate
the outcome, we compare it with the state-of-the-art, InfoMap algorithm [32].
InfoMap algorithm optimizes The Map equation, which exploits the information-
theoretic duality between finding community structure in networks and mini-
mizing the description length of a random walker’s movements on a network.
InfoMap supports the two and multi-level partitioning while the core idea is
similar to the Louvain algorithm. Implementing this algorithm on the Populite
data set, we get the information on the network structure represented in Table 6.

A schematic view of the web-based network navigator3 is depicted in Fig. 2.
The communities are labeled according to the political groups existing in the
Italian parliament. The representative nodes of each community are highlighted

Fig. 2. Schematic view of infomap Algorithm [32] representing the Populite data set.
The nodes with higher flow of information are demonstrated by each community. The
information flow among each community is weighted and demonstrated by pointers.

3 https://www.mapequation.org/infomap/.

https://www.mapequation.org/infomap/
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in the figure. The thickness of links connecting the communities demonstrates
the flow of information or in other words, the weight of the connection between
two partitions.

Having at hand this information from InfoMap, we could find the most influ-
ential nodes in the flow of information which can be the interpretation of leaders,
and nodes connected to these leaders construct the sub-communities, see Table 6
for details. On the other hand, leveraging the output vectors of AVPRA, as we
discussed in the Sect. 4.2, the partitions extracted by state-of-the-art algorithms
are in good accordance, more than 88%, with the partitions resulting from clus-
tering the VLs by AVPRA, details in Table 2.

Table 6. The extracted information using the InfoMap algorithm on the Populite
data set. Flow is the rate of received information to each communities, in-flow is the
entering and out-flow is the rate of exit information. Number of nodes, links and the
most involved nodes in the flow path are also mentioned.

Communities Flow In-flow Out-flow Nodes Links Representative nodes id

LEU/PD/REG 0.3898 0.07294 0.05730 184 11918 884,279,70,47

LEGA 0.1028 0.02777 0.03422 146 4999 904,68,645,695

FI/FDI/MISTO 0.1965 0.06379 0.06688 186 7366 106,377,156,74

M5S/CI 0.3105 0.03600 0.04211 256 15734 202,237,849,931

Considering each cluster as a community, we implement the OPTIC cluster-
ing algorithm on the VLs inside the partitions to find out the similarities in the
second level. Table 7, presents the mean VL, V LP , for the involved nodes inside
communities and sub-communities. Clearly, the most-weighted element of V LP

for the communities, is in accordance with the one in sub-communities. This app-
roach also could help in measuring the similarity/distances of sub-communities
in terms of measuring their tendency to specific political areas. Moreover, the
distribution of the existing groups and the absolute prominence of a few of them
are observable. For example, in cluster 0 all sub-clusters are catheterized by a
high value in the PD label. The sub-cluster 0.0 has higher values for the FDI,
M5S, and FI labels. The sub-cluster 1 has lower values for the M5S label
and higher values for the IV label. Similar observations can be provided for all
clusters and sub-clusters.
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Table 7. The mean weight of VLs located inside a cluster(communities) and sub-
clusters (sub communities). Two examples of clusters and some of the belonging sub-
clusters mean weights of elements are represented. Each element refers to a political
party a node may involved in. M5S: Movimento5 Stelle; GM: Gruppo Misto; Lega;
IV: Italia Viva; PD: Partito Democratico; FI: Forza Italia; FDI: Fratelli D’Italia; CI:
Coraggio Italia; LU: Liberi e Uguali; Pla: Per le autonomie

Mean weight of VL (VLp) of clusters/sub-clusters

Cluster M5S GM Lega IV PD FI FDI CI LU Pla

0 0.10784001 0.066733 0.055306 0.02146 0.660737 0.107175 0.029693 0.022745 0.036151 0.005188

Sub-clusters VLp of sub-clusters

0 0.1162275 0.068403 0.060062 0.020338 0.646582 0.112942 0.031678 0.023786 0.036209 0.005452

1 0.09068673 0.065458 0.05509 0.022798 0.653536 0.110606 0.029541 0.02258 0.035431 0.00496

2 0.08138816 0.061689 0.05185 0.023376 0.674685 0.104717 0.027103 0.021945 0.034635 0.004913

3 0.12472662 0.068516 0.061732 0.020404 0.637912 0.118537 0.034373 0.024205 0.03432 0.004864

4 0.10234745 0.064337 0.045815 0.022505 0.691376 0.09406 0.024516 0.021495 0.035897 0.005123

Cluster

1 0.746649 0.111349 0.038724 0.003204 0.075565 0.044796 0.014362 0.030933 0.009983 0.001288

Sub-clusters VLp of sub-clusters

0 0.748093 0.112028 0.038639 0.00308 0.072941 0.043236 0.013958 0.031057 0.00991 0.001257

1 0.774574 0.112761 0.03088 0.002101 0.047472 0.031561 0.010888 0.028511 0.007825 0.000872

2 0.774678 0.111601 0.024984 0.003139 0.071959 0.036025 0.010138 0.029971 0.009463 0.001004

3 0.758054 0.11416 0.035063 0.003208 0.070387 0.038875 0.013638 0.027245 0.009758 0.001030

4 0.78523 0.11601 0.02202 0.01803 0.04000 0.02840 0.00817 0.03110 0.00718 0.00075

Fig. 3. Hierarchical representation of communities extracted from infomap Algorithm
[32]. (a). The community of M5S and CI is zoomed in (b)The in-flow/out-flow of
information of node 212 is depicted.
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6 Conclusion

Due to the unbounded increasing size of networks representing a system of
instances and interconnections, neither capturing structural nor domain-specific
properties are feasible by using traditional network analysis tools. Leveraging
tools to reflect domain-specific and structural properties of networks in the fea-
ture space digestible by ML algorithm for further exploration seems inevitable
in real-life network studies. In our experiment, the AVPRA algorithm [37] has
been proven to be able to capture the structural properties of the studied net-
work on multiple analytical tasks, without disregarding the ability to retain its
domain-specific features. The algorithm is also incremental, making it possible
to update its results when the domain is evolving and supports a transparent
analysis of the obtained results, explaining them in terms of the domain features
embedded during the VLP procedure.
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