Skip to main content

COSINER: COntext SImilarity data augmentation for Named Entity Recognition

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13590))

Included in the following conference series:

Abstract

To alleviate the scarcity of manually annotated data in Named Entity Recognition (NER) tasks, data augmentation methods can be applied to automatically generate labeled data and improve performance of existing methods. However, based on manipulations of the input text, current techniques may generate too many noisy and mislabeled samples. In this paper we propose COntext SImilarity-based data augmentation for NER (COSINER), a method for NER data augmentation based on context similarity, i.e. we replace entity mentions with the most plausible ones based on the available training data and the contexts in which entities usually appear. We conduct experiments on popular benchmark datasets, showing that our method outperforms current baselines in various few-shot scenarios, where training data is assumed to be strongly limited. Experimental results show that not only does COSINER overcome baselines in terms of NER performances in highly-limited scenarios (2%, 5%), but also its computing times are comparable to simplest augmentation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/chakki-works/seqeval.

  2. 2.

    Our best results are obtained with the maximum similarity and local augmentation methods for similarity and augmentation set computation, respectively. In Sect. 4.2 we compare all the different approaches.

  3. 3.

    We have not considered the execution time required to generate Lexicon and embeddings, since they are one-time operations that can be performed off-line.

References

  1. Cai, H., Chen, H., Song, Y., Zhang, C., Zhao, X., Yin, D.: Data manipulation: towards effective instance learning for neural dialogue generation via learning to augment and reweight. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 6334–6343. Association for Computational Linguistics (2020)

    Google Scholar 

  2. Wei, J., Zou, K.: EDA: easy data augmentation techniques for boosting performance on text classification tasks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, pp. 6382–6388. Association for Computational Linguistics (2019)

    Google Scholar 

  3. Min, J., McCoy, R.T., Das, D., Pitler, E., Linzen, T.: Syntactic data augmentation increases robustness to inference heuristics. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 2339–2352. Association for Computational Linguistics (2020)

    Google Scholar 

  4. Yoo, K.M., Shin, Y., Lee, S.G.: Data augmentation for spoken language understanding via joint variational generation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 7402–7409 (2019)

    Google Scholar 

  5. Dai, X., Adel, H.: An analysis of simple data augmentation for named entity recognition. In: Proceedings of the 28th International Conference on Computational Linguistics, Barcelona, Spain, pp. 3861–3867. International Committee on Computational Linguistics (2020)

    Google Scholar 

  6. Postiglione, M.: Towards an Italian healthcare knowledge graph. In: Reyes, N., et al. (eds.) SISAP 2021. LNCS, vol. 13058, pp. 387–394. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89657-7_29

    Chapter  Google Scholar 

  7. Wang, X., Hu, V., Song, X., Garg, S., Xiao, J., Han, J.: ChemNER: fine-grained chemistry named entity recognition with ontology-guided distant supervision. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, pp. 5227–5240. Association for Computational Linguistics (2021)

    Google Scholar 

  8. Gekhman, Z., Aharoni, R., Beryozkin, G., Freitag, M., Macherey, W.: KoBE: knowledge-based machine translation evaluation. In: Findings of the Association for Computational Linguistics: EMNLP 2020, pp. 3200–3207. Association for Computational Linguistics (2020)

    Google Scholar 

  9. Li, B.Z., Min, S., Iyer, S., Mehdad, Y., Yih, W.T.: Efficient one-pass end-to-end entity linking for questions. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6433–6441. Association for Computational Linguistics (2020)

    Google Scholar 

  10. Alshammari, N., Alanazi, S.: The impact of using different annotation schemes on named entity recognition. Egypt. Inform. J. 22(3), 295–302 (2021). https://doi.org/10.1016/j.eij.2020.10.004

    Article  Google Scholar 

  11. Li, J., Sun, A., Han, J., Li, C.: A survey on deep learning for named entity recognition. IEEE Trans. Knowl. Data Eng. 1 (2020). https://doi.org/10.1109/TKDE.2020.2981314

  12. Schmidhuber, J.: On learning how to learn learning strategies (1995)

    Google Scholar 

  13. Henderson, M., Vulić, I.: ConVEx: data-efficient and few-shot slot labeling. arXiv:2010.11791 [cs] (2020)

  14. Shen, Y., Yun, H., Lipton, Z.C., Kronrod, Y., Anandkumar, A.: Deep active learning for named entity recognition. arXiv:1707.05928 [cs] (2018)

  15. Lou, Y., Qian, T., Li, F., Ji, D.: A graph attention model for dictionary-guided named entity recognition. IEEE Access 8, 71584–71592 (2020). https://doi.org/10.1109/ACCESS.2020.2987399

    Article  Google Scholar 

  16. Huang, J., et al.: Few-shot named entity recognition: a comprehensive study. arXiv:2012.14978 [cs] (2020)

  17. Ding, B., et al.: DAGA: data augmentation with a generation approach for low-resource tagging tasks. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 6045–6057. Association for Computational Linguistics (2020)

    Google Scholar 

  18. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM. 38(11), 39–41 (1995). https://doi.org/10.1145/219717.219748

    Article  Google Scholar 

  19. Chen, S., Aguilar, G., Neves, L., Solorio, T.: Data augmentation for cross-domain named entity recognition. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, pp. 5346–5356. Association for Computational Linguistics (2021)

    Google Scholar 

  20. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Minnesota, vol. 1, pp. 4171–4186. Association for Computational Linguistics (2019)

    Google Scholar 

  21. Brown, T., et al.: Language models are few-shot learners. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901. Curran Associates Inc. (2020)

    Google Scholar 

  22. Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning. In: Armstrong, S., Church, K., Isabelle, P., Manzi, S., Tzoukermann, E., Yarowsky, D. (eds.) Natural Language Processing Using Very Large Corpora, pp. 157–176. Springer, Cham (1999). https://doi.org/10.1007/978-94-017-2390-9_10

    Chapter  Google Scholar 

  23. Doğan, R., Leaman, R., Lu, Z.: NCBI disease corpus: a resource for disease name recognition and concept normalization. https://pubmed.ncbi.nlm.nih.gov/24393765/

  24. Li, J., et al.: BioCreative V CDR task corpus: a resource for chemical disease relation extraction. www.ncbi.nlm.nih.gov/pmc/articles/PMC4860626/

  25. Smith, L., Tanabe, L.K., nee Ando, R.J., et al.: The BioCreative II - critical assessment for information extraction in biology challenge. https://doi.org/10.1186/gb-2008-9-s2-s2

  26. Schick, T., Schütze, H.: Exploiting cloze-questions for few-shot text classification and natural language inference. In: Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume, pp. 255–269. Association for Computational Linguistics (2021)

    Google Scholar 

  27. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C.H., et al.: BioBERT: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics 36(4), 1234–1240 (2020)

    Google Scholar 

  28. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Sperlì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartolini, I., Moscato, V., Postiglione, M., Sperlì, G., Vignali, A. (2022). COSINER: COntext SImilarity data augmentation for Named Entity Recognition. In: Skopal, T., Falchi, F., Lokoč, J., Sapino, M.L., Bartolini, I., Patella, M. (eds) Similarity Search and Applications. SISAP 2022. Lecture Notes in Computer Science, vol 13590. Springer, Cham. https://doi.org/10.1007/978-3-031-17849-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17849-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17848-1

  • Online ISBN: 978-3-031-17849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics