Skip to main content

Autism Spectrum Disorder Classification Based on Interpersonal Neural Synchrony: Can Classification be Improved by Dyadic Neural Biomarkers Using Unsupervised Graph Representation Learning?

  • Conference paper
  • First Online:
Machine Learning in Clinical Neuroimaging (MLCN 2022)

Abstract

Research in machine learning for autism spectrum disorder (ASD) classification bears the promise to improve clinical diagnoses. However, recent studies in clinical imaging have shown the limited generalization of biomarkers across and beyond benchmark datasets. Despite increasing model complexity and sample size in neuroimaging, the classification performance of ASD remains far away from clinical application. This raises the question of how we can overcome these barriers to develop early biomarkers for ASD. One approach might be to rethink how we operationalize the theoretical basis of this disease in machine learning models. Here we introduced unsupervised graph representations that explicitly map the neural mechanisms of a core aspect of ASD, deficits in dyadic social interaction, as assessed by dual brain recordings, termed hyperscanning, and evaluated their predictive performance. The proposed method differs from existing approaches in that it is more suitable to capture social interaction deficits on a neural level and is applicable to young children and infants. First results from functional near-infrared spectroscopy data indicate potential predictive capacities of a task-agnostic, interpretable graph representation. This first effort to leverage interaction-related deficits on neural level to classify ASD may stimulate new approaches and methods to enhance existing models to achieve developmental ASD biomarkers in the future.

M. Schulte-Rüther and V. Reindl—Shared last authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Babiloni, F., Astolfi, L.: Social neuroscience and hyperscanning techniques: past, present and future. Neurosci. Biobehav. Rev. 44, 76–93 (2014)

    Article  Google Scholar 

  2. Baxter, A.J., Brugha, T., Erskine, H.E., Scheurer, R.W., Vos, T., Scott, J.G.: The epidemiology and global burden of autism spectrum disorders. Psychol. Med. 45(3), 601–613 (2015)

    Article  Google Scholar 

  3. Benavoli, A., Corani, G., Demšar, J., Zaffalon, M.: Time for a change: a tutorial for comparing multiple classifiers through Bayesian analysis. J. Mach. Learn. Res. 18(77), 1–36 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bolis, D., Schilbach, L.: Observing and participating in social interactions: action perception and action control across the autistic spectrum. Developm. Cognit. Neurosci. 29, 168–175 (2018)

    Article  Google Scholar 

  5. Bouthillier, X., et al.: Accounting for variance in machine learning benchmarks. In: Smola, A., Dimakis, A., Stoica, I. (eds.) Proceedings of Machine Learning and Systems, vol. 3, pp. 747–769 (2021)

    Google Scholar 

  6. Brodersen, K.H., et al.: Dissecting psychiatric spectrum disorders by generative embedding. NeuroImage 4, 98–111 (2014)

    Google Scholar 

  7. Cai, C., Wang, Y.: A simple yet effective baseline for non-attributed graph classification. arXiv preprint arXiv:1811.03508 (2018)

  8. Chanel, G., Pichon, S., Conty, L., Berthoz, S., Chevallier, C., Grèzes, J.: Classification of autistic individuals and controls using cross-task characterization of fMRI activity. NeuroImage 10, 78–88 (2016)

    Article  Google Scholar 

  9. Chen, H., Koga, H.: GL2vec: graph embedding enriched by line graphs with edge features. Neural Inf. Process. 11955, 3–14 (2019)

    Google Scholar 

  10. Dawson, G., et al.: Randomized, controlled trial of an intervention for toddlers with autism: the Early Start Denver Model. Pediatrics 125(1), e17–e23 (2010)

    Google Scholar 

  11. Ecker, C., Bookheimer, S.Y., Murphy, D.G.: Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. Lancet Neurol. 14(11), 1121–1134 (2015)

    Article  Google Scholar 

  12. Gao, F., Wolf, G., Hirn, M.: Geometric scattering for graph data analysis. In: Proceedings of the 36th International Conference on Machine Learning, pp. 2122–2131. PMLR (2019). ISSN: 2640–3498

    Google Scholar 

  13. Gerloff, C., Konrad, K., Bzdok, D., Büsing, C., Reindl, V.: Interacting brains revisited: a cross-brain network neuroscience perspective. Hum. Brain Mapp. 43(14), 4458–4474 (2022)

    Google Scholar 

  14. Hosseini, M., et al.: I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data. Neurosci. Biobehav. Rev. 119, 456–467 (2020)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Kruppa, J.A., et al.: Brain and motor synchrony in children and adolescents with ASD-a fNIRS hyperscanning study. Soc. Cognit. Affect. Neurosci. 16(1–2), 103–116 (2021)

    Google Scholar 

  17. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning Distributed Representations of Graphs. arXiv preprint arXiv:1707.05005 (2017)

  18. Pooch, E.H.P., Ballester, P., Barros, R.C.: Can we trust deep learning based diagnosis? The impact of domain shift in chest radiograph classification. In: Petersen, J., et al. (eds.) TIA 2020. LNCS, vol. 12502, pp. 74–83. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62469-9_7

  19. Quiñones-Camacho, L.E., Fishburn, F.A., Belardi, K., Williams, D.L., Huppert, T.J., Perlman, S.B.: Dysfunction in interpersonal neural synchronization as a mechanism for social impairment in autism spectrum disorder. Autism Res. 14(8), 1585–1596 (2021)

    Article  Google Scholar 

  20. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association, Washington DC (2013)

    Google Scholar 

  21. Reindl, V., et al.: Multimodal hyperscanning reveals that synchrony of body and mind are distinct in mother-child dyads. NeuroImage 251, 118982 (2022)

    Google Scholar 

  22. Rozemberczki, B., Sarkar, R.: Characteristic functions on graphs: birds of a feather, from statistical descriptors to parametric models. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1325–1334. ACM, Virtual Event Ireland (2020)

    Google Scholar 

  23. Schulte-Rüther, M., et al.: Using machine learning to improve diagnostic assessment of ASD in the light of specific differential and co-occurring diagnoses. J. Child Psychol. Psychiat. (2022)

    Google Scholar 

  24. Scott-Van Zeeland, A.A., Dapretto, M., Ghahremani, D.G., Poldrack, R.A., Bookheimer, S.Y.: Reward processing in autism. Autism Res. 3(2), 53–67 (2010)

    Google Scholar 

  25. Tanabe, H.C., et al.: Hard to “tune in”: neural mechanisms of live face-to-face interaction with high-functioning autistic spectrum disorder. Front. Human Neurosci. 6, 268 (2012)

    Google Scholar 

  26. Traut, N., et al.: Insights from an autism imaging biomarker challenge: promises and threats to biomarker discovery. NeuroImage 255, 119171 (2022)

    Google Scholar 

  27. Varoquaux, G., Cheplygina, V.: Machine learning for medical imaging: methodological failures and recommendations for the future. NPJ Digit. Med. 5(1), 1–8 (2022)

    Article  Google Scholar 

  28. Wang, L., Huang, C., Ma, W., Cao, X., Vosoughi, S.: Graph embedding via diffusion-wavelets-based node feature distribution characterization. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3478–3482. ACM, Queensland (2021)

    Google Scholar 

  29. Wang, Q., et al.: Autism symptoms modulate interpersonal neural synchronization in children with autism spectrum disorder in cooperative interactions. Brain Topography 33(1), 112–122 (2020)

    Google Scholar 

  30. Zeidan, J., et al.: Global prevalence of autism: a systematic review update. Autism Res. 15(5), 778–790 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gerloff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerloff, C., Konrad, K., Kruppa, J., Schulte-Rüther, M., Reindl, V. (2022). Autism Spectrum Disorder Classification Based on Interpersonal Neural Synchrony: Can Classification be Improved by Dyadic Neural Biomarkers Using Unsupervised Graph Representation Learning?. In: Abdulkadir, A., et al. Machine Learning in Clinical Neuroimaging. MLCN 2022. Lecture Notes in Computer Science, vol 13596. Springer, Cham. https://doi.org/10.1007/978-3-031-17899-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17899-3_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17898-6

  • Online ISBN: 978-3-031-17899-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics