Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13521))

Included in the following conference series:

  • 1206 Accesses

Abstract

This paper examines the benefits and shortfalls of using local binary “one-vs.-all” classifiers with a variety of models in different hierarchical layouts in order to classify sleep stages using raw signal inputs in 30-s increments. Although under-performing more advanced algorithms, our best hierarchies outperform a Random Forest multi-class classifier, indicating the potential of binary classifiers in future work. This paper lays the groundwork for developing more advanced hierarchical classifiers using pre-trained binary classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Consequences of insufficient sleep. https://healthysleep.med.harvard.edu/healthy/matters/consequences

  2. Aboalayon, K.A.I., Faezipour, M., Almuhammadi, W.S., Moslehpour, S.: Sleep stage classification using EEG signal analysis: a comprehensive survey and new investigation. Entropy 18(9), 272 (2016)

    Article  Google Scholar 

  3. Bakmeedeniya, T.: Random forest approach for sleep stage classification. 10, 768 (2020). https://doi.org/10.29322/IJSRP.10.05.2020.p10189

  4. CDC: Sleep and sleep disorders. https://www.sleepassociation.org/about-sleep/sleep-statistics/

  5. Chen, Y., Chang, R., Guo, J.: Emotion recognition of EEG signals based on the ensemble learning method: Adaboost. Math. Problems Eng. 2021, 1–12 (2021)

    Google Scholar 

  6. of Communcations, O., Liason, P.: Brain basics: sleep disorders. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Understanding-Sleep#10

  7. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Article  Google Scholar 

  8. Dabas, H., Sethi, C., Dua, C., Dalawat, M., Sethia, D.: Emotion classification using EEG signals. In: Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence, pp. 380–384 (2018)

    Google Scholar 

  9. Eldele, E., et al.: An attention-based deep learning approach for sleep stage classification with single-channel EEG. IEEE Trans. Neural Syst. Rehab. Eng. 29, 809–818 (2021). https://doi.org/10.1109/TNSRE.2021.3076234

    Article  Google Scholar 

  10. Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002). https://doi.org/10.1109/72.991427

    Article  Google Scholar 

  11. Keenan, S.A.: Polysomnographic technique: an overview. Sleep Disorders Medicine, pp. 79–94 (1994)

    Google Scholar 

  12. Kemp, B., Zwinderman, A., Tuk, B., Kamphuisen, H., Oberye, J.: Analysis of a sleep-dependent neuronal feedback loop: the slow-wave microcontinuity of the EEG. IEEE Trans. Biomed. Eng. 47(9), 1185–1194 (2000). https://doi.org/10.1109/10.867928

    Article  Google Scholar 

  13. McCarley, R.W., Sinton, C.M.: Neurobiology of sleep and wakefulness. Scholarpedia 3(4), 3313 (2008). https://doi.org/10.4249/scholarpedia.3313

    Article  Google Scholar 

  14. Mousavi, S., Afghah, F., Acharya, U.R.: SleepEEGNet: automated sleep stage scoring with sequence to sequence deep learning approach. PloS one 14(5), e0216456 (2019)

    Article  Google Scholar 

  15. Patel, A.K., Reddy, V., Araujo, J.F.: Physiology, Sleep Stages. In: StatPearls [Internet] (2021)

    Google Scholar 

  16. Sha’abani, M.N.A.H., Fuad, N., Jamal, N., Ismail, M.F.: kNN and SVM classification for EEG: a review. In: Kasruddin Nasir, A.N., et al. (eds.) InECCE2019. LNEE, vol. 632, pp. 555–565. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-2317-5_47

    Chapter  Google Scholar 

  17. Subasi, A., Ismail Gursoy, M.: EEG signal classification using PCA, ICA, LDA and support vector machines. Expert Syst. Appl. 37(12), 8659–8666 (2010). https://doi.org/10.1016/j.eswa.2010.06.065. https://www.sciencedirect.com/science/article/pii/S0957417410005695

    Article  Google Scholar 

  18. Uzun, S.: Machine learning-based classification of time series of chaotic systems. Eur. Phys. J. Spec. Top. , 1–11 (2021). https://doi.org/10.1140/epjs/s11734-021-00346-z

  19. Vilamala, A., Madsen, K.H., Hansen, L.K.: Deep convolutional neural networks for interpretable analysis of EEG sleep stage scoring. In: 2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth Barkdoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, E., Barkdoll, K. (2022). Hierarchical Binary Classifiers for Sleep Stage Classification. In: Duffy, V.G., Gao, Q., Zhou, J., Antona, M., Stephanidis, C. (eds) HCI International 2022 – Late Breaking Papers: HCI for Health, Well-being, Universal Access and Healthy Aging. HCII 2022. Lecture Notes in Computer Science, vol 13521. Springer, Cham. https://doi.org/10.1007/978-3-031-17902-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17902-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17901-3

  • Online ISBN: 978-3-031-17902-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics