Abstract
The importance of context for data quality (DQ) has been shown decades ago and is widely accepted. Early approaches and surveys defined DQ as fitness for use and showed the influence of context on DQ. However, very few proposals for context modeling can be found in DQ literature. This paper reviews many context components suggested in the literature and proposes a context model tailored for DQ management. Through a running example, and relying on the literature reviewed, we illustrate the applicability of the model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Research project for the e-Government Agency and Information and Knowledge Society (AGESIC) in Uruguay, https://www.gub.uy/agencia-gobierno-electronico-sociedad-informacion-conocimiento/.
References
Akram, M., Malik, A.: Evaluating citizens’ readiness to embrace e-government services. In: Proceedings of the 13th Annual International Conference on Digital Government Research, pp. 58–67 (2012)
Bertossi, L., Rizzolo, F., Jiang, L.: Data quality is context dependent. In: Castellanos, M., Dayal, U., Markl, V. (eds.) BIRTE 2010. LNBIP, vol. 84, pp. 52–67. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22970-1_5
Davoudian, A., Liu, M.: Big data systems: a software engineering perspective. ACM 53(5), 1–39 (2020)
Dey, A.: Understanding and using context. PUC 5(1), 4–7 (2001)
Etcheverry, L., et al.: Qbox-foundation: a metadata platform for quality measurement. In: Proceeding of the 4th Workshop on Data and Knowledge Quality (2008)
Fürber, C.: Data Quality Management with Semantic Technologies, chap. Data Quality. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-658-12225-6
Görz, Q., Kaiser, M.: An indicator function for insufficient data quality – a contribution to data accuracy. In: Rahman, H., Mesquita, A., Ramos, I., Pernici, B. (eds.) MCIS 2012. LNBIP, vol. 129, pp. 169–184. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33244-9_12
Marotta, A., Vaisman, A.: Rule-based multidimensional data quality assessment using contexts. In: Madria, S., Hara, T. (eds.) DaWaK 2016. LNCS, vol. 9829, pp. 299–313. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43946-4_20
Merino, J., et al.: A data quality in use model for big data. FGCS 63, 123–130 (2016)
Serra, F., Marotta, A.: Data warehouse quality assessment using contexts. In: Cellary, W., Mokbel, M.F., Wang, J., Wang, H., Zhou, R., Zhang, Y. (eds.) WISE 2016. LNCS, vol. 10042, pp. 436–448. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48743-4_36
Serra, F., et al.: Use of context in data quality management: a systematic literature review (2022). arxiv.org/abs/2204.10655
Strong, D., et al.: Data quality in context. CACM 40(5), 103–110 (1997)
Todoran, I., et al.: A methodology to evaluate important dimensions of information quality in systems. JDIQ 6(2-3), 1–23 (2015)
Visengeriyeva, L., Abedjan, Z.: Anatomy of metadata for data curation. JDIQ 12(3) (2020)
Wang, R., Strong, D.: Beyond accuracy: what data quality means to data consumers. JMIS 12(4), 5–33 (1996)
Wang, J., et al.: An ontology-based quality framework for data integration. In: Workshops on Business Informatics Research, pp. 196–208 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Serra, F., Peralta, V., Marotta, A., Marcel, P. (2022). Modeling Context for Data Quality Management. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds) Conceptual Modeling. ER 2022. Lecture Notes in Computer Science, vol 13607. Springer, Cham. https://doi.org/10.1007/978-3-031-17995-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-17995-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17994-5
Online ISBN: 978-3-031-17995-2
eBook Packages: Computer ScienceComputer Science (R0)