Skip to main content

A Modeling Rule for Improving the Performance of Graph Models

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13607))

Included in the following conference series:

Abstract

Graph databases are an emerging technology with the potential to support complex data-intensive applications. Existing works on designing graph models often take an intuitive approach. In this paper, we discuss why this can easily lead to performance degradation for application-specific queries, and illustrate this with the example of dynamic taxi ride-sharing. Our findings call for more sophisticated data modeling approaches. We propose a new filter-based graph model for dynamic taxi ride-sharing based on a thorough analysis of an existing intuitive graph model. In particular, we suggest a new modeling rule using filter nodes to improve the performance of mission-critical queries. We evaluate our proposed graph model using simulations with real-world data. The results demonstrate that our proposed filter-based model outperforms the intuitive graph model in terms of query performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agatz, N., et al.: Optimization for dynamic ride-sharing: a review. Eur. J. Oper. Res. 223, 295–303 (2012)

    Article  Google Scholar 

  2. Angles, R., et al.: Survey of graph database models. ACM Comp. Surv. 40, 1–39 (2008)

    Article  Google Scholar 

  3. Barbehenn, M.: A note on the complexity of Dijkstra’s algorithm for graphs with weighted vertices. IEEE Trans. Comp. 47, 263 (1998)

    Article  MathSciNet  Google Scholar 

  4. De Virgilio, R., Maccioni, A., Torlone, R.: Model-driven design of graph databases. In: Yu, E., Dobbie, G., Jarke, M., Purao, S. (eds.) ER 2014. LNCS, vol. 8824, pp. 172–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12206-9_14

    Chapter  Google Scholar 

  5. Joslyn, C., et al.: Massive scale cyber traffic analysis: a driver for graph database research. In: ACM International Workshop Graph Data Management Experiences Systems (2013)

    Google Scholar 

  6. de Lima, C., dos Santos Mello, R.: A workload-driven logical design approach for NoSQL document databases. In: iiWAS, pp. 1–10 (2015)

    Google Scholar 

  7. Lysenko, A., et al.: Representing and querying disease networks using graph databases. BioData Min. 9, 23 (2016)

    Article  Google Scholar 

  8. Ma, S., et al.: T-share: a large-scale dynamic taxi ridesharing service. In: IEEE ICDE, pp. 410–421 (2013)

    Google Scholar 

  9. Ma, S., et al.: Real-time city-scale taxi ridesharing. IEEE Trans. Knowl. Data Eng. 27, 1782–1795 (2015)

    Article  Google Scholar 

  10. Neo4j: Graph database use cases. https://neo4j.com/use-cases/

  11. Neo4j: Neo4j GraphGists. https://neo4j.com/graphgists/

  12. Park, Y., et al.: Graph databases for large-scale healthcare systems. In: IEEE ICDE Workshops, pp. 12–19 (2014)

    Google Scholar 

  13. Robinson, I., et al.: Graph Databases. O’Reilly (2013)

    Google Scholar 

  14. Sahu, S., et al.: The ubiquity of large graphs and surprising challenges of graph processing. In: Proceedings VLDB , vol. 11, pp. 420–431 (2017)

    Google Scholar 

  15. Santos, D.O., et al.: Dynamic taxi and ridesharing: a framework and heuristics for the optimization problem. In: IJCAI, vol. 13 (2013)

    Google Scholar 

  16. de Sousa, V.M., Cura, L.M.d.V.: Logical design of graph databases from an entity-relationship conceptual model. In: iiWAS, pp. 183–189 (2018)

    Google Scholar 

  17. Steinmetz, D., Merz, F., Ma, H., Hartmann, S.: A graph model for taxi ride sharing supported by graph databases. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 108–116. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_10

    Chapter  Google Scholar 

  18. Vicknair, C., et al.: A comparison of a graph database and a relational database. In: ACM SE Conference, p. 42 (2010)

    Google Scholar 

  19. Zhao, M., Liu, Y., Zhou, P.: Towards a systematic approach to graph data modeling: scenario-based design and experiences. In: SEKE, pp. 634–637 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinmetz, D., Merz, F., Burmester, G., Ma, H., Hartmann, S. (2022). A Modeling Rule for Improving the Performance of Graph Models. In: Ralyté, J., Chakravarthy, S., Mohania, M., Jeusfeld, M.A., Karlapalem, K. (eds) Conceptual Modeling. ER 2022. Lecture Notes in Computer Science, vol 13607. Springer, Cham. https://doi.org/10.1007/978-3-031-17995-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17995-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17994-5

  • Online ISBN: 978-3-031-17995-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics