Skip to main content

Dimensional Reduction Applied to an Intelligent Model for Boost Converter Switching Operation

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

The dimensional reduction algorithms are applied to a hybrid intelligent model that distinguishes the switching operating mode of a boost converter. Thus, the boost converter has been analyzed and both operating mode are explained, distinguishing between Hard-switching and Soft-switching modes. Then, the dataset is created out of the data obtained from simulation of the real circuit and the hybrid intelligent classification model is implemented. Finally, the dimensional reduction of the input variables is carried out and the results are compared. As result, the proposed model with the applied dimensional reduced dataset is able to distinguish between the HS and SS operating modes with high accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-bayati, A.M.S., Alharbi, S.S., Alharbi, S.S., Matin, M.: A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET/Si-diode, SiC-JFET/SiC-Schottky diode, and GaN-transistor/SiC-Schottky diode power devices. In: 2017 North American Power Symposium (NAPS), pp. 1–6 (2017). https://doi.org/10.1109/NAPS.2017.8107192

  2. Aláiz-MoretónH, H., et al.: A fault detection system for a geothermal heat exchanger sensor based on intelligent techniques. Sensors 19(12), 2740 (2019)

    Article  Google Scholar 

  3. Casado-Vara, R., et al.: Edge computing and adaptive fault-tolerant tracking control algorithm for smart buildings: a case study. Cybern. Syst. 51(7), 685–697 (2020). https://doi.org/10.1080/01969722.2020.1798643

  4. Casteleiro-Roca, J.L., Javier Barragan, A., Segura, F., Luis Calvo-Rolle, J., Manuel Andujar, J.: Intelligent hybrid system for the prediction of the voltage-current characteristic curve of a hydrogen-based fuel cell. Revista Iberoamericana de Automática e Informática industrial 16(4), 492–501 (2019)

    Article  Google Scholar 

  5. Fernandez-Serantes, L.A., Berger, H., Stocksreiter, W., Weis, G.: Ultra-high frequent switching with GaN-HEMTs using the cross-capacitances as non-dissipative snubbers. In: PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1–8. VDE (2016)

    Google Scholar 

  6. Fernandez-Serantes, L.A., Casteleiro-Roca, J.L., Berger, H., Calvo-Rolle, J.L.: Hybrid intelligent system for a synchronous rectifier converter control and soft switching ensurement. Eng. Sci. Technol. Int. J. 101189 (2022)

    Google Scholar 

  7. Fernandez-Serantes, L.A., Casteleiro-Roca, J.L., Calvo-Rolle, J.L.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Automática e Informática industrial (2022). https://doi.org/10.4995/riai.2022.16656

    Article  Google Scholar 

  8. Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 561–572. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_49

    Chapter  Google Scholar 

  9. García-Ordás, M.T., et al.: Clustering techniques selection for a hybrid regression model: a case study based on a solar thermal system. Cybern. Syst. 1–20 (2022). https://doi.org/10.1080/01969722.2022.2030006

  10. Gonzalez-Cava, J.M., et al.: Machine learning techniques for computer-based decision systems in the operating theatre: application to analgesia delivery. Log. J. IGPL. 29(2), 236–250 (2020). https://doi.org/10.1093/jigpal/jzaa049

  11. Jove, E., Casteleiro-Roca, J., Quintián, H., Méndez-Pérez, J., Calvo-Rolle, J.: Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing. Revista Iberoamericana de Automática e Informática industrial 17(1), 84–93 (2020)

    Article  Google Scholar 

  12. Jove, E., et al.: Comparative study of one-class based anomaly detection techniques for a bicomponent mixing machine monitoring. Cybern. Syst. 51(7), 649–667 (2020). https://doi.org/10.1080/01969722.2020.1798641

  13. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A fault detection system based on unsupervised techniques for industrial control loops. Expert. Syst. 36(4), e12395 (2019)

    Article  Google Scholar 

  14. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Simić, D., Méndez-Pérez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Log. J. IGPL 28(4), 502–518 (2020)

    Article  MathSciNet  Google Scholar 

  15. Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections. Inf. Fusion. 65, 50–57 (2021). https://doi.org/10.1016/j.inffus.2020.08.011, https://www.sciencedirect.com/science/article/pii/S1566253520303407

  16. Jove, E., et al.: Modelling the hypnotic patient response in general anesthesia using intelligent models. Log. J. IGPL 27(2), 189–201 (2019)

    Article  MathSciNet  Google Scholar 

  17. Jove, E., et al.: Hybrid intelligent model to predict the remifentanil infusion rate in patients under general anesthesia. Log. J. IGPL. 29(2), 193–206 (2020). https://doi.org/10.1093/jigpal/jzaa046

  18. Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(1–3), 18–41 (2005)

    Article  Google Scholar 

  19. Leira, A., et al.: One-class-based intelligent classifier for detecting anomalous situations during the anesthetic process. Log. J. IGPL (2020). https://doi.org/10.1093/jigpal/jzaa065

  20. Liu, M.Z., Shao, Y.H., Li, C.N., Chen, W.J.: Smooth pinball loss nonparallel support vector machine for robust classification. Appl. Soft Comput. 98, 106840 (2020). https://doi.org/10.1016/j.asoc.2020.106840

  21. Marchesan, G., Muraro, M., Cardoso, G., Mariotto, L., da Silva, C.: Method for distributed generation anti-islanding protection based on singular value decomposition and linear discrimination analysis. Elect. Power Syst. Res. 130, 124–131 (2016). https://doi.org/10.1016/j.epsr.2015.08.025

    Article  Google Scholar 

  22. Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications, and Design. John Wiley & Sons, Hoboken (2003)

    Google Scholar 

  23. Neumayr, D., Bortis, D., Kolar, J.W.: The essence of the little box challenge-part a: key design challenges solutions. CPSS Trans. Power Electron. App. 5(2), 158–179 (2020). https://doi.org/10.24295/CPSSTPEA.2020.00014

  24. Qin, A.K., Suganthan, P.N.: Enhanced neural gas network for prototype-based clustering. Pattern Recogn. 38(8), 1275–1288 (2005)

    Article  Google Scholar 

  25. Tahiliani, S., Sreeni, S., Moorthy, C.B.: A multilayer perceptron approach to track maximum power in wind power generation systems. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 587–591 (2019). https://doi.org/10.1109/TENCON.2019.8929414

  26. Liu, T., Zhang, W., Yu, Z.: Modeling of spiral inductors using artificial neural network. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 4, pp. 2353–2358 (2005). https://doi.org/10.1109/IJCNN.2005.1556269

  27. Thapngam, T., Yu, S., Zhou, W.: DDOS discrimination by linear discriminant analysis (LDA). In: 2012 International Conference on Computing, Networking and Communications (ICNC), pp. 532–536. IEEE (2012)

    Google Scholar 

  28. Uysal, I., Gövenir, H.A.: An overview of regression techniques for knowledge discovery. Knowl. Eng. Rev. 14, 319–340 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis-Alfonso Fernandez-Serantes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fernandez-Serantes, LA., Casteleiro-Roca, JL., Novais, P., Simić, D., Calvo-Rolle, J.L. (2023). Dimensional Reduction Applied to an Intelligent Model for Boost Converter Switching Operation. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_12

Download citation

Publish with us

Policies and ethics