Abstract
The dimensional reduction algorithms are applied to a hybrid intelligent model that distinguishes the switching operating mode of a boost converter. Thus, the boost converter has been analyzed and both operating mode are explained, distinguishing between Hard-switching and Soft-switching modes. Then, the dataset is created out of the data obtained from simulation of the real circuit and the hybrid intelligent classification model is implemented. Finally, the dimensional reduction of the input variables is carried out and the results are compared. As result, the proposed model with the applied dimensional reduced dataset is able to distinguish between the HS and SS operating modes with high accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Al-bayati, A.M.S., Alharbi, S.S., Alharbi, S.S., Matin, M.: A comparative design and performance study of a non-isolated DC-DC buck converter based on Si-MOSFET/Si-diode, SiC-JFET/SiC-Schottky diode, and GaN-transistor/SiC-Schottky diode power devices. In: 2017 North American Power Symposium (NAPS), pp. 1–6 (2017). https://doi.org/10.1109/NAPS.2017.8107192
Aláiz-MoretónH, H., et al.: A fault detection system for a geothermal heat exchanger sensor based on intelligent techniques. Sensors 19(12), 2740 (2019)
Casado-Vara, R., et al.: Edge computing and adaptive fault-tolerant tracking control algorithm for smart buildings: a case study. Cybern. Syst. 51(7), 685–697 (2020). https://doi.org/10.1080/01969722.2020.1798643
Casteleiro-Roca, J.L., Javier Barragan, A., Segura, F., Luis Calvo-Rolle, J., Manuel Andujar, J.: Intelligent hybrid system for the prediction of the voltage-current characteristic curve of a hydrogen-based fuel cell. Revista Iberoamericana de Automática e Informática industrial 16(4), 492–501 (2019)
Fernandez-Serantes, L.A., Berger, H., Stocksreiter, W., Weis, G.: Ultra-high frequent switching with GaN-HEMTs using the cross-capacitances as non-dissipative snubbers. In: PCIM Europe 2016; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, pp. 1–8. VDE (2016)
Fernandez-Serantes, L.A., Casteleiro-Roca, J.L., Berger, H., Calvo-Rolle, J.L.: Hybrid intelligent system for a synchronous rectifier converter control and soft switching ensurement. Eng. Sci. Technol. Int. J. 101189 (2022)
Fernandez-Serantes, L.A., Casteleiro-Roca, J.L., Calvo-Rolle, J.L.: Hybrid intelligent system for a half-bridge converter control and soft switching ensurement. Revista Iberoamericana de Automática e Informática industrial (2022). https://doi.org/10.4995/riai.2022.16656
Fernández-Serantes, L.A., Estrada Vázquez, R., Casteleiro-Roca, J.L., Calvo-Rolle, J.L., Corchado, E.: Hybrid intelligent model to predict the SOC of a LFP power cell type. In: Polycarpou, M., de Carvalho, A.C.P.L.F., Pan, J.-S., Woźniak, M., Quintian, H., Corchado, E. (eds.) HAIS 2014. LNCS (LNAI), vol. 8480, pp. 561–572. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07617-1_49
García-Ordás, M.T., et al.: Clustering techniques selection for a hybrid regression model: a case study based on a solar thermal system. Cybern. Syst. 1–20 (2022). https://doi.org/10.1080/01969722.2022.2030006
Gonzalez-Cava, J.M., et al.: Machine learning techniques for computer-based decision systems in the operating theatre: application to analgesia delivery. Log. J. IGPL. 29(2), 236–250 (2020). https://doi.org/10.1093/jigpal/jzaa049
Jove, E., Casteleiro-Roca, J., Quintián, H., Méndez-Pérez, J., Calvo-Rolle, J.: Anomaly detection based on intelligent techniques over a bicomponent production plant used on wind generator blades manufacturing. Revista Iberoamericana de Automática e Informática industrial 17(1), 84–93 (2020)
Jove, E., et al.: Comparative study of one-class based anomaly detection techniques for a bicomponent mixing machine monitoring. Cybern. Syst. 51(7), 649–667 (2020). https://doi.org/10.1080/01969722.2020.1798641
Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A fault detection system based on unsupervised techniques for industrial control loops. Expert. Syst. 36(4), e12395 (2019)
Jove, E., Casteleiro-Roca, J.L., Quintián, H., Simić, D., Méndez-Pérez, J.A., Luis Calvo-Rolle, J.: Anomaly detection based on one-class intelligent techniques over a control level plant. Log. J. IGPL 28(4), 502–518 (2020)
Jove, E., Casteleiro-Roca, J.L., Quintián, H., Méndez-Pérez, J.A., Calvo-Rolle, J.L.: A new method for anomaly detection based on non-convex boundaries with random two-dimensional projections. Inf. Fusion. 65, 50–57 (2021). https://doi.org/10.1016/j.inffus.2020.08.011, https://www.sciencedirect.com/science/article/pii/S1566253520303407
Jove, E., et al.: Modelling the hypnotic patient response in general anesthesia using intelligent models. Log. J. IGPL 27(2), 189–201 (2019)
Jove, E., et al.: Hybrid intelligent model to predict the remifentanil infusion rate in patients under general anesthesia. Log. J. IGPL. 29(2), 193–206 (2020). https://doi.org/10.1093/jigpal/jzaa046
Kaski, S., Sinkkonen, J., Klami, A.: Discriminative clustering. Neurocomputing 69(1–3), 18–41 (2005)
Leira, A., et al.: One-class-based intelligent classifier for detecting anomalous situations during the anesthetic process. Log. J. IGPL (2020). https://doi.org/10.1093/jigpal/jzaa065
Liu, M.Z., Shao, Y.H., Li, C.N., Chen, W.J.: Smooth pinball loss nonparallel support vector machine for robust classification. Appl. Soft Comput. 98, 106840 (2020). https://doi.org/10.1016/j.asoc.2020.106840
Marchesan, G., Muraro, M., Cardoso, G., Mariotto, L., da Silva, C.: Method for distributed generation anti-islanding protection based on singular value decomposition and linear discrimination analysis. Elect. Power Syst. Res. 130, 124–131 (2016). https://doi.org/10.1016/j.epsr.2015.08.025
Mohan, N., Undeland, T.M., Robbins, W.P.: Power Electronics: Converters, Applications, and Design. John Wiley & Sons, Hoboken (2003)
Neumayr, D., Bortis, D., Kolar, J.W.: The essence of the little box challenge-part a: key design challenges solutions. CPSS Trans. Power Electron. App. 5(2), 158–179 (2020). https://doi.org/10.24295/CPSSTPEA.2020.00014
Qin, A.K., Suganthan, P.N.: Enhanced neural gas network for prototype-based clustering. Pattern Recogn. 38(8), 1275–1288 (2005)
Tahiliani, S., Sreeni, S., Moorthy, C.B.: A multilayer perceptron approach to track maximum power in wind power generation systems. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON), pp. 587–591 (2019). https://doi.org/10.1109/TENCON.2019.8929414
Liu, T., Zhang, W., Yu, Z.: Modeling of spiral inductors using artificial neural network. In: Proceedings of 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 4, pp. 2353–2358 (2005). https://doi.org/10.1109/IJCNN.2005.1556269
Thapngam, T., Yu, S., Zhou, W.: DDOS discrimination by linear discriminant analysis (LDA). In: 2012 International Conference on Computing, Networking and Communications (ICNC), pp. 532–536. IEEE (2012)
Uysal, I., Gövenir, H.A.: An overview of regression techniques for knowledge discovery. Knowl. Eng. Rev. 14, 319–340 (1999)
Acknowledgements
CITIC, as a Research Center of the University System of Galicia, is funded by Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF) and the Secretaría Xeral de Universidades (Ref. ED431G 2019/01).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fernandez-Serantes, LA., Casteleiro-Roca, JL., Novais, P., Simić, D., Calvo-Rolle, J.L. (2023). Dimensional Reduction Applied to an Intelligent Model for Boost Converter Switching Operation. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-18050-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18049-1
Online ISBN: 978-3-031-18050-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)