Skip to main content

First Steps Predicting Execution of Civil Works from Georeferenced Infrastructure Data

  • Conference paper
  • First Online:
17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022) (SOCO 2022)

Abstract

Geospatial data treatment is an important task since it is a big part of big data. Nowadays, geospatial data exploitation is lacking in terms of artificial intelligence. In this work, we focus on the usage of an machine learning models to exploit a geospatial data. We will follow a complete workflow from the collection and first descriptive analysis of the data to the preprocess and evaluation of the different machine learning algorithms. From unload dataset we will predict if the unload will lead to civil work, in other words, it is a classification problem. We conclude that combining machine learning and geospatial data we can get a lot out of it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee, J.-G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Res. (2015). 2(2), 74–81. Visions on Big Data (2015)

    Google Scholar 

  2. Breunig, M., et al.: Geospatial data management research: Progress and future directions. ISPRS Int. J. Geo-Inf. 9(2) (2020)

    Google Scholar 

  3. Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., Yamu, C.: UUrban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 12(6), 2307 (2020)

    Article  Google Scholar 

  4. Effati, M., Thill, J.-C., Shabani, S.: Geospatial and machine learning techniques for wicked social science problems: analysis of crash severity on a regional highway corridor. J. Geogr. Syst. 17(2), 107–135 (2015). https://doi.org/10.1007/s10109-015-0210-x

    Article  Google Scholar 

  5. Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., bin Ghazali, A. H.: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geom. Nat. Hazards Risk 8(2), 1080–1102 (2017)

    Google Scholar 

  6. Jiang, Y., et al.: Towards intelligent geospatial data discovery: a machine learning framework for search ranking. Int. J. Digit. Earth 11(9), 956–971 (2018)

    Article  Google Scholar 

  7. Tehrany, M.S., Jones, S., Shabani, F., Martínez-Álvarez, F., Tien Bui, D.: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoret. Appl. Climatol. 137(1), 637–653 (2019)

    Google Scholar 

  8. Kovacs-Györi, A., et al.: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. ISPRS Int. J. Geo-Inf. 9(12) (2020)

    Google Scholar 

  9. Podgorski, J., Wu, R., Chakravorty, B., Polya, D.A.: Groundwater arsenic distribution in India by machine learning geospatial modeling. Int. J. Environ. Res. Public Health 17(19) (2020)

    Google Scholar 

  10. Dollner, J.: Geospatial artificial intelligence: Potentials of machine learning for 3D point clouds and geospatial digital twins. PFG. Photogram. Remote Sens. Geoinf. Sci. 88(1), 15–24 (2020)

    Google Scholar 

  11. Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3) (2017)

    Google Scholar 

  12. Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)

    Article  MathSciNet  Google Scholar 

  13. Murdoch, J., Barnes, J.A.: Normal distribution. In: Statistics: Problems and Solutions, pp. 80–108. Palgrave Macmillan UK, London (1973). https://doi.org/10.1007/978-1-349-01063-9_4

  14. Murphy, E.A.: One cause? many causes?: the argument from the bimodal distribution. J. Chronic Dis. 17(4), 301–324 (1964)

    Article  Google Scholar 

  15. Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encyclop. Database Syst. 5, 532–538 (2009)

    Google Scholar 

  16. Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 27(3), 326–327 (1995)

    Article  Google Scholar 

  17. Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)

    Article  Google Scholar 

  18. Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26(3), 1–16 (2006)

    Google Scholar 

  19. Quinlan, J.R.: Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 28(1), 71–72 (1996)

    Article  Google Scholar 

  20. Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In Ensemble Machine Learning, pp. 157–175. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7

  21. Hip, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, Issue 8, 832–844 (1988)

    Google Scholar 

  22. Jahromi, A.H., Taheri, M.: A non-parametric mixture of Gaussian Naive Bayes classifiers based on local independent features. In: 2017 Artificial Intelligence and Signal Processing Conference (AISP), pp. 209-212. IEEE (2017)

    Google Scholar 

  23. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  24. Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57, 345–420 (2016)

    Article  MathSciNet  Google Scholar 

  25. Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy (CEN) for binary and multiclass classification. PLoS ONE 14(1), 1–30 (2019)

    Article  Google Scholar 

  26. Massey, F.J., Jr.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)

    Article  Google Scholar 

  27. McKight, P.E., Najab, J.: Kruskal-Wallis Test. In: The Corsini Encyclopedia of Psychology, pp. 1–1. Wiley, New York (2020)

    Google Scholar 

Download references

Acknowledgements

This work has been partially funded by Ministerio de Ciencia e Innovacion from Spain under the project PID2020-116346GB-I00

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. David Nuñez-Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batmunkh, B. et al. (2023). First Steps Predicting Execution of Civil Works from Georeferenced Infrastructure Data. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_19

Download citation

Publish with us

Policies and ethics