Abstract
Geospatial data treatment is an important task since it is a big part of big data. Nowadays, geospatial data exploitation is lacking in terms of artificial intelligence. In this work, we focus on the usage of an machine learning models to exploit a geospatial data. We will follow a complete workflow from the collection and first descriptive analysis of the data to the preprocess and evaluation of the different machine learning algorithms. From unload dataset we will predict if the unload will lead to civil work, in other words, it is a classification problem. We conclude that combining machine learning and geospatial data we can get a lot out of it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Lee, J.-G., Kang, M.: Geospatial big data: challenges and opportunities. Big Data Res. (2015). 2(2), 74–81. Visions on Big Data (2015)
Breunig, M., et al.: Geospatial data management research: Progress and future directions. ISPRS Int. J. Geo-Inf. 9(2) (2020)
Dembski, F., Wössner, U., Letzgus, M., Ruddat, M., Yamu, C.: UUrban digital twins for smart cities and citizens: the case study of Herrenberg, Germany. Sustainability 12(6), 2307 (2020)
Effati, M., Thill, J.-C., Shabani, S.: Geospatial and machine learning techniques for wicked social science problems: analysis of crash severity on a regional highway corridor. J. Geogr. Syst. 17(2), 107–135 (2015). https://doi.org/10.1007/s10109-015-0210-x
Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., bin Ghazali, A. H.: Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geom. Nat. Hazards Risk 8(2), 1080–1102 (2017)
Jiang, Y., et al.: Towards intelligent geospatial data discovery: a machine learning framework for search ranking. Int. J. Digit. Earth 11(9), 956–971 (2018)
Tehrany, M.S., Jones, S., Shabani, F., Martínez-Álvarez, F., Tien Bui, D.: A novel ensemble modeling approach for the spatial prediction of tropical forest fire susceptibility using LogitBoost machine learning classifier and multi-source geospatial data. Theoret. Appl. Climatol. 137(1), 637–653 (2019)
Kovacs-Györi, A., et al.: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. ISPRS Int. J. Geo-Inf. 9(12) (2020)
Podgorski, J., Wu, R., Chakravorty, B., Polya, D.A.: Groundwater arsenic distribution in India by machine learning geospatial modeling. Int. J. Environ. Res. Public Health 17(19) (2020)
Dollner, J.: Geospatial artificial intelligence: Potentials of machine learning for 3D point clouds and geospatial digital twins. PFG. Photogram. Remote Sens. Geoinf. Sci. 88(1), 15–24 (2020)
Schubert, E., Sander, J., Ester, M., Kriegel, H.P., Xu, X.: DBSCAN revisited, revisited: why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3) (2017)
Fraley, C., Raftery, A.E.: Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc. 97(458), 611–631 (2002)
Murdoch, J., Barnes, J.A.: Normal distribution. In: Statistics: Problems and Solutions, pp. 80–108. Palgrave Macmillan UK, London (1973). https://doi.org/10.1007/978-1-349-01063-9_4
Murphy, E.A.: One cause? many causes?: the argument from the bimodal distribution. J. Chronic Dis. 17(4), 301–324 (1964)
Refaeilzadeh, P., Tang, L., Liu, H.: Cross-validation. Encyclop. Database Syst. 5, 532–538 (2009)
Dietterich, T.: Overfitting and undercomputing in machine learning. ACM Comput. Surv. (CSUR) 27(3), 326–327 (1995)
Noble, W.S.: What is a support vector machine? Nat. Biotechnol. 24(12), 1565–1567 (2006)
Hofmann, M.: Support vector machines-kernels and the kernel trick. Notes 26(3), 1–16 (2006)
Quinlan, J.R.: Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 28(1), 71–72 (1996)
Cutler, A., Cutler, D.R., Stevens, J.R.: Random forests. In Ensemble Machine Learning, pp. 157–175. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7
Hip, T.K.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, Issue 8, 832–844 (1988)
Jahromi, A.H., Taheri, M.: A non-parametric mixture of Gaussian Naive Bayes classifiers based on local independent features. In: 2017 Artificial Intelligence and Signal Processing Conference (AISP), pp. 209-212. IEEE (2017)
Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62
Goldberg, Y.: A primer on neural network models for natural language processing. J. Artif. Intell. Res. 57, 345–420 (2016)
Delgado, R., Núñez-González, J.D.: Enhancing confusion entropy (CEN) for binary and multiclass classification. PLoS ONE 14(1), 1–30 (2019)
Massey, F.J., Jr.: The kolmogorov-smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)
McKight, P.E., Najab, J.: Kruskal-Wallis Test. In: The Corsini Encyclopedia of Psychology, pp. 1–1. Wiley, New York (2020)
Acknowledgements
This work has been partially funded by Ministerio de Ciencia e Innovacion from Spain under the project PID2020-116346GB-I00
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Batmunkh, B. et al. (2023). First Steps Predicting Execution of Civil Works from Georeferenced Infrastructure Data. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-18050-7_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18049-1
Online ISBN: 978-3-031-18050-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)