Skip to main content

Abstract

The main objective of this work is to demonstrate that a set of bioindicators linked to the lichen Lobaria Pulmonaria and the bryophyte called Leucodon Sciuroides are adequate predictors of air pollution heavy metals (HM). A study case was performed in Oran, a port and coastal city in northwestern Algeria, located on the coast of the Mediterranean Sea. Each of the HM has been modelled using a machine learning procedure and in the experiments, the artificial neural networks (ANN) produces always better and more accurate results than multiple linear regression (MLR). Furthermore, good obtained results (R correlation coefficient greater than 0.9) demonstrate the main hypotheses and could be used as a virtual sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in NO2 estimations: a case study in the Bay of Algeciras (Spain). Stochast. Environ. Res. Risk Assess. 33(3), 801–815 (2019)

    Google Scholar 

  2. Rodríguez-García, M.I., González-Enrique, J., Moscoso-López, J.A., Ruiz-Aguilar, J.J., Rodríguez-López, J., Turias, I.J.: Comparison of maritime transport influence of SO2 levels in Algeciras and Alcornocales Park (Spain). XIV Conf. Transp. Eng. CIT2021, 58, 2352–1465 (2021)

    Google Scholar 

  3. Lanier, C., et al.: Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb). Ecotoxicol. Environ. Saf. 167, 278–287 (2019)

    Article  Google Scholar 

  4. Uzhinskiy, A., Aničić Urošević, M., Frontasyeva, M-V.: Prediction of air pollution by potentially toxic elements over urban area by combining satellite imagery, moss biomonitoring data and machine learning. Ciência e Técnica Vitivinícola J. 35(12), 34–46 (2020)

    Google Scholar 

  5. Di Fiore, C., et al.: Honeybees as bioindicators of heavy metal pollution in urban and rural areas in the South of Italy. Atmosphere 13, 4 (2022)

    Article  Google Scholar 

  6. Asta, J., Garrec, J.P.: Etude de l’accumulation du fluor dans les lichens d’une vallee alpine polluee. Environ. Poll. Ser. Ecolog. Biol. 4, 267–286 (1980)

    Article  Google Scholar 

  7. Bargagli, R., Nimis, P.L., Monaci, F.: Lichen biomonitoring of trace element deposition in urban, industrial and reference areas of Italy. J. Trace Elem. Med Biol. 11, 173–175 (1997)

    Article  Google Scholar 

  8. Van Haluwyn, C., Semadi, A., Deruelle, S., Letrouit, M.A.: The corticolous lichen vegetation of the Annaba, eastern Algeria; [La vegetation lichenique corticole de la region d‘Annaba (Algerie orientale)]. Cryptogamie: Bryologie et Lichenologie, 15, 1–21 (1994)

    Google Scholar 

  9. Kouadria, N., Belhoucine, F., Bouredja, N., Ait Kaci, M., Abismail, Y., Alioua Berrebba, A.: Bioaccumulation of lead by Xanthoria Parietina and Hylocomium Splendens, and its effect on some physiological parameters. J. Mater. Environ. Sci. 11, 247–254 (2020)

    Google Scholar 

  10. Turias, I.J., González, F.J., Martín, M.L., Galindo, P.L.: Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar region, Spain: a multiple comparison strategy. Environ. Monit. Assess. 143(1–3), 131–146 (2008)

    Article  Google Scholar 

  11. González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Urda, D., Turias, I.J.: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stoch. Env. Res. Risk Assess. 35, 1999–2019 (2021)

    Article  Google Scholar 

  12. Moscoso-López, J.A., Urda, D., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J.: Hourly air quality index (AQI) forecasting using machine learning methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 123–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_12

    Chapter  Google Scholar 

  13. Sri Preethaa, K.R., Yuvaraj, N., Jenifa, G., Indhu, R., Kanmani, P.: Lichen element based autonomous air pollution monitoring around smart cities – a deep learning approach. Turkish J. Comput. Math. Educ. 12(10), 151–161 (2021)

    Google Scholar 

  14. Campos, G.O., Aparecido Villas, L., Da Cunha, F.D.: Analysis of air pollution utilizing virtual sensor models. In: Proceedings - 2021 IEEE Latin-American Conference on Communications, LATINCOM, pp. 1–6 (2021)

    Google Scholar 

  15. Carlsson, R., Nilsson, K.: Status of the red-listed lichen Lobaria pulmonaria on the Åland Islands. SW Finland. Ann. Botanici Fennici. 46(6), 549–554 (2009)

    Article  Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Hornik, K., Stinchcombe, M., Halbert, W.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)

    Article  Google Scholar 

  18. Garson, G.D.: Interpreting neural connection weights. Artif. Intell. Expert 6, 47–51 (1991)

    Google Scholar 

  19. Elkamel, A., Abdul-Wahab, S., Bouhamra, W., Alper, E.: Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv. Environ. Res. 5, 47–59 (2001)

    Article  Google Scholar 

  20. Martín, M.L., et al.: Prediction of CO maximum ground level concentrations in the Bay of Algeciras. Spain Artif. Neural Netw. Chemosphere 70(7), 1190–1195 (2008)

    Google Scholar 

  21. Jobson, J.D.: Applied Multivariate Data Analysis. Springer Texts in Statistics, vol. 1, Springer-Verlag, New York (1991). https://doi.org/10.1007/978-1-4612-0955-3_3

Download references

Acknowledgements

This work is part of the research project RTI2018-098160-B-I00 supported by ‘MICINN’ Programa Estatal de I+D+i Orientada a ‘Los Retos de la Sociedad’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Inmaculada Rodríguez-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-García, M.I., Kouadria, N., León, A.M.O., González-Enrique, J., Turias, I.J. (2023). Virtual Sensor to Estimate Air Pollution Heavy Metals Using Bioindicators. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_20

Download citation

Publish with us

Policies and ethics