Abstract
The main objective of this work is to demonstrate that a set of bioindicators linked to the lichen Lobaria Pulmonaria and the bryophyte called Leucodon Sciuroides are adequate predictors of air pollution heavy metals (HM). A study case was performed in Oran, a port and coastal city in northwestern Algeria, located on the coast of the Mediterranean Sea. Each of the HM has been modelled using a machine learning procedure and in the experiments, the artificial neural networks (ANN) produces always better and more accurate results than multiple linear regression (MLR). Furthermore, good obtained results (R correlation coefficient greater than 0.9) demonstrate the main hypotheses and could be used as a virtual sensor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in NO2 estimations: a case study in the Bay of Algeciras (Spain). Stochast. Environ. Res. Risk Assess. 33(3), 801–815 (2019)
Rodríguez-García, M.I., González-Enrique, J., Moscoso-López, J.A., Ruiz-Aguilar, J.J., Rodríguez-López, J., Turias, I.J.: Comparison of maritime transport influence of SO2 levels in Algeciras and Alcornocales Park (Spain). XIV Conf. Transp. Eng. CIT2021, 58, 2352–1465 (2021)
Lanier, C., et al.: Combined toxic effects and DNA damage to two plant species exposed to binary metal mixtures (Cd/Pb). Ecotoxicol. Environ. Saf. 167, 278–287 (2019)
Uzhinskiy, A., Aničić Urošević, M., Frontasyeva, M-V.: Prediction of air pollution by potentially toxic elements over urban area by combining satellite imagery, moss biomonitoring data and machine learning. Ciência e Técnica Vitivinícola J. 35(12), 34–46 (2020)
Di Fiore, C., et al.: Honeybees as bioindicators of heavy metal pollution in urban and rural areas in the South of Italy. Atmosphere 13, 4 (2022)
Asta, J., Garrec, J.P.: Etude de l’accumulation du fluor dans les lichens d’une vallee alpine polluee. Environ. Poll. Ser. Ecolog. Biol. 4, 267–286 (1980)
Bargagli, R., Nimis, P.L., Monaci, F.: Lichen biomonitoring of trace element deposition in urban, industrial and reference areas of Italy. J. Trace Elem. Med Biol. 11, 173–175 (1997)
Van Haluwyn, C., Semadi, A., Deruelle, S., Letrouit, M.A.: The corticolous lichen vegetation of the Annaba, eastern Algeria; [La vegetation lichenique corticole de la region d‘Annaba (Algerie orientale)]. Cryptogamie: Bryologie et Lichenologie, 15, 1–21 (1994)
Kouadria, N., Belhoucine, F., Bouredja, N., Ait Kaci, M., Abismail, Y., Alioua Berrebba, A.: Bioaccumulation of lead by Xanthoria Parietina and Hylocomium Splendens, and its effect on some physiological parameters. J. Mater. Environ. Sci. 11, 247–254 (2020)
Turias, I.J., González, F.J., Martín, M.L., Galindo, P.L.: Prediction models of CO, SPM and SO2 concentrations in the Campo de Gibraltar region, Spain: a multiple comparison strategy. Environ. Monit. Assess. 143(1–3), 131–146 (2008)
González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Urda, D., Turias, I.J.: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stoch. Env. Res. Risk Assess. 35, 1999–2019 (2021)
Moscoso-López, J.A., Urda, D., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J.: Hourly air quality index (AQI) forecasting using machine learning methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 123–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_12
Sri Preethaa, K.R., Yuvaraj, N., Jenifa, G., Indhu, R., Kanmani, P.: Lichen element based autonomous air pollution monitoring around smart cities – a deep learning approach. Turkish J. Comput. Math. Educ. 12(10), 151–161 (2021)
Campos, G.O., Aparecido Villas, L., Da Cunha, F.D.: Analysis of air pollution utilizing virtual sensor models. In: Proceedings - 2021 IEEE Latin-American Conference on Communications, LATINCOM, pp. 1–6 (2021)
Carlsson, R., Nilsson, K.: Status of the red-listed lichen Lobaria pulmonaria on the Åland Islands. SW Finland. Ann. Botanici Fennici. 46(6), 549–554 (2009)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. In: Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge (1986)
Hornik, K., Stinchcombe, M., Halbert, W.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359–366 (1989)
Garson, G.D.: Interpreting neural connection weights. Artif. Intell. Expert 6, 47–51 (1991)
Elkamel, A., Abdul-Wahab, S., Bouhamra, W., Alper, E.: Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv. Environ. Res. 5, 47–59 (2001)
Martín, M.L., et al.: Prediction of CO maximum ground level concentrations in the Bay of Algeciras. Spain Artif. Neural Netw. Chemosphere 70(7), 1190–1195 (2008)
Jobson, J.D.: Applied Multivariate Data Analysis. Springer Texts in Statistics, vol. 1, Springer-Verlag, New York (1991). https://doi.org/10.1007/978-1-4612-0955-3_3
Acknowledgements
This work is part of the research project RTI2018-098160-B-I00 supported by ‘MICINN’ Programa Estatal de I+D+i Orientada a ‘Los Retos de la Sociedad’.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rodríguez-García, M.I., Kouadria, N., León, A.M.O., González-Enrique, J., Turias, I.J. (2023). Virtual Sensor to Estimate Air Pollution Heavy Metals Using Bioindicators. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-18050-7_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18049-1
Online ISBN: 978-3-031-18050-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)