Skip to main content

Abstract

Potatoes (Solanum tuberosum) is one of the highest produced commodities for human consumption, with a global production of 359.07 mega metric ton per year and covering a huge cultivation area in the world. As a result, being able to predict the yield of this crop is an interesting topic, with a high impact on agriculture production. Accordingly, to predict some potato-tuber production and quality indicators, this work innovates by using phenotypical plant characteristics to which soft-computing techniques are applied. More precisely, the Linear Multiple-Regression, the Radial Basis Function Network, the Multilayer Perceptron, and the Support Vector Machine are benchmarked in the present work. Promising results have been obtained, validating the application of soft-computing techniques to predict the growth of potato tubers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020). https://doi.org/10.1016/j.compag.2020.105709

    Article  Google Scholar 

  2. Darwin, B., Dharmaraj, P., Prince, S., Popescu, D.E., Hemanth, D.J.: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review. Agronomy 11(4), 646 (2021). https://doi.org/10.3390/agronomy11040646

    Article  Google Scholar 

  3. Potato production worldwide. Statista. https://www.statista.com/statistics/382174/global-potato-production/

  4. Cromme, N., Prakash, A.B., Lutaladio, N., Ezeta, F.: Strengthening potato value chains: technical and policy options for developing countries. In: Workshop. Rome (Italy). Nov. 2008. Rome (Italy). Food and Agriculture Organization of the United Nations (FAO). ISBN 978-92-5-106627-0, p. 147 (2010). https://www.fao.org/docrep/013/i1710e/i1710e.pdf

  5. Rady, A.M., Guyer, D.E.: Rapid and/or nondestructive quality evaluation methods for potatoes: a review. Comput. Electr. Agric. 117, 31–48, (2015). https://doi.org/10.1016/j.compag.2015.07.002. ISSN 0168–1699

  6. Lee, H.-S., Shin, B.-S.: Potato detection and segmentation based on mask R-CNN. J. Biosyst. Eng. 45(4), 233–238 (2020). https://doi.org/10.1007/s42853-020-00063-w

    Article  Google Scholar 

  7. Yale, U.O.: Multiple Linear Regression (2017). http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm

  8. Lippmann, R.P.: Pattern classification using neural networks. IEEE Commun. Mag. 27(11), 47–50 (1989)

    Article  Google Scholar 

  9. Pal, S.K.S.: Mitra, Multilayer Perceptron, Fuzzy Sets, Classifiaction (1992)

    Google Scholar 

  10. Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57–65 (2016)

    Article  Google Scholar 

  11. Hara, P., Piekutowska, M., Niedbała, G.: Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land 10(6), 609 (2021)

    Google Scholar 

  12. Crusiol, L.G., Sun, L., Sibaldelli, R.N., et al.: Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precis. Agric. 23(3), 1093–1123 (2022)

    Google Scholar 

  13. Huete, A., Didan, D., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the MODIS veg-etation indices. Rem. Sens. Environ. 83(1–2), 195–213 (2002). ISSN 0034-4257

    Google Scholar 

  14. Fleisher, D.H., et al.: A potato model intercomparison across varying climates and productivity levels. Glob. Chang. Biol. 23, 1258–1281 (2017)

    Article  Google Scholar 

  15. Baker, K.M., Kirk, W.W.: Comparative analysis of models integrating synoptic forecast data into potato late blight risk estimate systems. Comput. Electr. Agric. 57, 23–32 (2007)

    Google Scholar 

  16. Al-Gaadi, K.A., Hassaballa, A.A., Tola, E., Kayad, A.G., Madugundu, R., Alblewi, B., et al.: Prediction of potato crop yield using precision agriculture techniques. PLoS One 11(9), e0162219 (2016)

    Google Scholar 

  17. Piekutowska, M., et al.: The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy 11, 885 (2021)

    Article  Google Scholar 

  18. Li, D., et al.: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning. Rem. Sens. 13, 3322 (2021). https://doi.org/10.3390/rs13163322

    Article  Google Scholar 

  19. Bishop, C.M.: Neural Networks for Pattern Recognition (1995)

    Google Scholar 

  20. Pal, S.K., Mitra, S.: Multilayer Perceptron, Fuzzy Sets, and Classification (2011)

    Google Scholar 

  21. Hecht, N.: Theory of the backpropagation neural network. In: IEEE Conference Publication, vol. 1, pp. 583–605 (1989)

    Google Scholar 

  22. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  23. Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (2008). https://doi.org/10.1162/neco.1991.3.2.246

  24. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14(3), 199–222 (2004)

    Google Scholar 

  25. Vapnik, V.: The Nature of Statistical Learning Theory, Springer Science & Business Media (1999)

    Google Scholar 

  26. Yartu, M., Cambra, C., Navarro, M., Rad, C., Arroyo, Á., Herrero, Á.: Neural models to predict irrigation needs of a potato plantation. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 600–613. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_58

    Chapter  Google Scholar 

  27. Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statist. Surv. 4, 40–79 (2010)

    Article  MathSciNet  Google Scholar 

  28. Das, K., Jiang, J., Rao, J.: Mean squared error of empirical predictor. Ann. Stat. 32(2), 818–840 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Part of this work was funded by a grant agreement between Lab-Ferrer and UBUCOMP. Authors are grateful to the farmer Mr. José María Izquierdo for providing the experimental field and the monitoring of irrigation. Special thanks to Ms. Mercedes Yartu, whose master thesis contributed to the data gathering.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ángel Arroyo or Carlos Cambra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arroyo, Á., Cambra, C., Basurto, N., Rad, C., Navarro, M., Herrero, Á. (2023). Regression Techniques to Predict the Growth of Potato Tubers. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_21

Download citation

Publish with us

Policies and ethics