Abstract
Potatoes (Solanum tuberosum) is one of the highest produced commodities for human consumption, with a global production of 359.07 mega metric ton per year and covering a huge cultivation area in the world. As a result, being able to predict the yield of this crop is an interesting topic, with a high impact on agriculture production. Accordingly, to predict some potato-tuber production and quality indicators, this work innovates by using phenotypical plant characteristics to which soft-computing techniques are applied. More precisely, the Linear Multiple-Regression, the Radial Basis Function Network, the Multilayer Perceptron, and the Support Vector Machine are benchmarked in the present work. Promising results have been obtained, validating the application of soft-computing techniques to predict the growth of potato tubers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
van Klompenburg, T., Kassahun, A., Catal, C.: Crop yield prediction using machine learning: a systematic literature review. Comput. Electron. Agric. 177, 105709 (2020). https://doi.org/10.1016/j.compag.2020.105709
Darwin, B., Dharmaraj, P., Prince, S., Popescu, D.E., Hemanth, D.J.: Recognition of bloom/yield in crop images using deep learning models for smart agriculture: a review. Agronomy 11(4), 646 (2021). https://doi.org/10.3390/agronomy11040646
Potato production worldwide. Statista. https://www.statista.com/statistics/382174/global-potato-production/
Cromme, N., Prakash, A.B., Lutaladio, N., Ezeta, F.: Strengthening potato value chains: technical and policy options for developing countries. In: Workshop. Rome (Italy). Nov. 2008. Rome (Italy). Food and Agriculture Organization of the United Nations (FAO). ISBN 978-92-5-106627-0, p. 147 (2010). https://www.fao.org/docrep/013/i1710e/i1710e.pdf
Rady, A.M., Guyer, D.E.: Rapid and/or nondestructive quality evaluation methods for potatoes: a review. Comput. Electr. Agric. 117, 31–48, (2015). https://doi.org/10.1016/j.compag.2015.07.002. ISSN 0168–1699
Lee, H.-S., Shin, B.-S.: Potato detection and segmentation based on mask R-CNN. J. Biosyst. Eng. 45(4), 233–238 (2020). https://doi.org/10.1007/s42853-020-00063-w
Yale, U.O.: Multiple Linear Regression (2017). http://www.stat.yale.edu/Courses/1997-98/101/linmult.htm
Lippmann, R.P.: Pattern classification using neural networks. IEEE Commun. Mag. 27(11), 47–50 (1989)
Pal, S.K.S.: Mitra, Multilayer Perceptron, Fuzzy Sets, Classifiaction (1992)
Pantazi, X.E., Moshou, D., Alexandridis, T., Whetton, R.L., Mouazen, A.M.: Wheat yield prediction using machine learning and advanced sensing techniques. Comput. Electron. Agric. 121, 57–65 (2016)
Hara, P., Piekutowska, M., Niedbała, G.: Selection of independent variables for crop yield prediction using artificial neural network models with remote sensing data. Land 10(6), 609 (2021)
Crusiol, L.G., Sun, L., Sibaldelli, R.N., et al.: Strategies for monitoring within-field soybean yield using Sentinel-2 Vis-NIR-SWIR spectral bands and machine learning regression methods. Precis. Agric. 23(3), 1093–1123 (2022)
Huete, A., Didan, D., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G.: Overview of the radiometric and biophysical performance of the MODIS veg-etation indices. Rem. Sens. Environ. 83(1–2), 195–213 (2002). ISSN 0034-4257
Fleisher, D.H., et al.: A potato model intercomparison across varying climates and productivity levels. Glob. Chang. Biol. 23, 1258–1281 (2017)
Baker, K.M., Kirk, W.W.: Comparative analysis of models integrating synoptic forecast data into potato late blight risk estimate systems. Comput. Electr. Agric. 57, 23–32 (2007)
Al-Gaadi, K.A., Hassaballa, A.A., Tola, E., Kayad, A.G., Madugundu, R., Alblewi, B., et al.: Prediction of potato crop yield using precision agriculture techniques. PLoS One 11(9), e0162219 (2016)
Piekutowska, M., et al.: The application of multiple linear regression and artificial neural network models for yield prediction of very early potato cultivars before harvest. Agronomy 11, 885 (2021)
Li, D., et al.: Improving potato yield prediction by combining cultivar information and uav remote sensing data using machine learning. Rem. Sens. 13, 3322 (2021). https://doi.org/10.3390/rs13163322
Bishop, C.M.: Neural Networks for Pattern Recognition (1995)
Pal, S.K., Mitra, S.: Multilayer Perceptron, Fuzzy Sets, and Classification (2011)
Hecht, N.: Theory of the backpropagation neural network. In: IEEE Conference Publication, vol. 1, pp. 583–605 (1989)
MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)
Park, J., Sandberg, I.W.: Universal approximation using radial-basis-function networks. Neural Comput. 3(2), 246–257 (2008). https://doi.org/10.1162/neco.1991.3.2.246
Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Statist. Comput. 14(3), 199–222 (2004)
Vapnik, V.: The Nature of Statistical Learning Theory, Springer Science & Business Media (1999)
Yartu, M., Cambra, C., Navarro, M., Rad, C., Arroyo, Á., Herrero, Á.: Neural models to predict irrigation needs of a potato plantation. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 600–613. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_58
Arlot, S., Celisse, A.: A survey of cross-validation procedures for model selection. Statist. Surv. 4, 40–79 (2010)
Das, K., Jiang, J., Rao, J.: Mean squared error of empirical predictor. Ann. Stat. 32(2), 818–840 (2004)
Acknowledgements
Part of this work was funded by a grant agreement between Lab-Ferrer and UBUCOMP. Authors are grateful to the farmer Mr. José María Izquierdo for providing the experimental field and the monitoring of irrigation. Special thanks to Ms. Mercedes Yartu, whose master thesis contributed to the data gathering.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Arroyo, Á., Cambra, C., Basurto, N., Rad, C., Navarro, M., Herrero, Á. (2023). Regression Techniques to Predict the Growth of Potato Tubers. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-18050-7_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18049-1
Online ISBN: 978-3-031-18050-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)