Abstract
Regression methods aim to predict a numerical value of a target variable given some input variables by building a function \(f:\mathbb {R}^n \rightarrow \mathbb {R}\). In Industry 4.0 regression tasks, tabular data-sets are especially frequent. Decision Trees, ensemble methods such as Gradient Boosting and Random Forest, or Support Vector Machines are widely used for regression tasks with tabular data. However, Deep Learning approaches are rarely used with this type of data, due to, among others, the lack of spatial correlation between features. Therefore, in this research, we propose two Deep Learning approaches for working with tabular data. Specifically, two Convolutional Neural Networks architectures are tested against different state of the art regression methods. We perform an hyper-parameter tuning of all the techniques and compare the model performance in different industrial tabular data-sets. Experimental results show that both Convolutional Neural Network approaches can outperform the commonly used methods for regression tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Waibel, M., Oosthuizen, G., Du Toit, D.: Proc. Manuf. 21, 774 (2018)
Oesterreich, T.D., Teuteberg, F.: Comput. Ind. 83, 121 (2016)
Vaidya, S., Ambad, P., Bhosle, S.: Proc. Manuf. 20, 233 (2018)
Shwartz-Ziv, R., Armon, A.: (2021). https://openreview.net/forum?id=vdgtepS1pV
Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: IEEE Access 7, 122644 (2019)
Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(5), 723 (2013)
Jin, S., Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(6), 985 (2015)
Lin, C.C., Deng, D.J., Kuo, C.H., Chen, L.: IEEE Access 7, 56198 (2019)
Lee, T., Lee, K.B., Kim, C.O.: IEEE Trans. Semicond. Manuf. 29(4), 436 (2016)
Carvalho, T.P., Soares, F.A., Vita, R., Francisco, Rd.P., Basto, J.P., Alcalá, S.G.: Comput. Ind. Eng. 137, 106024 (2019)
Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: IEEE Trans. Industr. Inf. 11(3), 812 (2014)
Kanawaday, A., Sane, A.: In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87–90. IEEE (2017)
Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6. IEEE (2018)
Mathew, V., Toby, T., Singh, V., Rao, B.M., Kumar, M.G.: In: 2017 IEEE International Conference on Circuits and Systems (ICCS), pp. 306–311. IEEE (2017)
Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., McArthur, S.: Wind Energy 22(3), 360 (2019)
Elforjani, M., Shanbr, S.: IEEE Trans. Industr. Electron. 65(7), 5864 (2017)
Wu, M., Song, Z., Moon, Y.B.: J. Intell. Manuf. 30(3), 1111 (2019)
Touzani, S., Granderson, J., Fernandes, S.: Energy Buildings 158, 1533 (2018)
Boto, F., Murua, M., Gutierrez, T., Casado, S., Carrillo, A., Arteaga, A.: Metals 12(2), 172 (2022)
Tong, Z., Miao, J., Tong, S., Lu, Y.: J. Cleaner Prod. 317, 128265 (2021)
Zhang, Y., Xiong, R., He, H., Pecht, M.G.: IEEE Trans. Veh. Technol. 67(7), 5695 (2018)
Zhang, H., Zhang, Q., Shao, S., Niu, T., Yang, X.: IEEE Access 8, 132188 (2020)
Sohaib, M., Kim, C.H., Kim, J.M.: Sensors 17(12), 2876 (2017)
Luo, B., Wang, H., Liu, H., Li, B., Peng, F.: IEEE Trans. Industr. Electron. 66(1), 509 (2018)
Terrazas, G., Martínez-Arellano, G., Benardos, P., Ratchev, S.: J. Manuf. Mater. Proc. 2(4), 72 (2018)
Kiangala, K.S., Wang, Z.: IEEE Access 8, 121033 (2020)
Saeed, F., Paul, A., Rho, S.: In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 280–287. Springer (2020)
Arık, S.O., Pfister, T.: arXiv (2020)
Popov, S., Morozov, S., Babenko, A.: arXiv preprint arXiv:1909.06312 (2019)
Abutbul, A., Elidan, G., Katzir, L., El-Yaniv, R.: arXiv preprint arXiv:2006.06465 (2020)
baosenguo. Kaggle-MoA 2nd Place Solution (2021). https://github.com/baosenguo/Kaggle-MoA-2nd-Place-Solution. Original-date: 2020-12-09T02:24:45Z
Eren, L., Ince, T., Kiranyaz, S.: J. Signal Process. Syst. 91(2), 179 (2019)
Yao, D., Li, B., Liu, H., Yang, J., Jia, L.: Measurement 175, 109166 (2021)
Ortego, P., Diez-Olivan, A., Del Ser, J., Veiga, F., Penalva, M., Sierra, B.: Swarm Evol. Comput. 54, 100650 (2020)
Zhu, Y., et al.: Sci. Rep. 11(1), 1 (2021)
Sun, B.: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Seber, G.A., Lee, A.J.: Linear Regression Analysis, vol. 329. John Wiley & Sons (2012)
Rokach, L., Maimon, O.: In: Data Mining and Knowledge Discovery Handbook, pp. 165–192, Springer (2005). https://doi.org/10.1007/b107408
Breiman, L.: Mach. Learn. 45(1), 5 (2001)
Friedman, J.H.: North 1(3), 1 (1999)
Cortes, C., Vapnik, V.: Mach. Learn. 20(3), 273 (1995)
O’Shea, K., Nash, R.: arXiv preprint arXiv:1511.08458 (2015)
Jin, H., Song, Q., Hu, X.: In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956. ACM (2019)
Fandrich, R., Lüngen, H.B., Wuppermann, C.D.: Metall. Res. Technol. 105(7–8), 364 (2008)
Chollet, F.: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Moles, L., Boto, F., Echegaray, G., Torre, I.G. (2023). Convolutional Neural Networks for Structured Industrial Data. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_35
Download citation
DOI: https://doi.org/10.1007/978-3-031-18050-7_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18049-1
Online ISBN: 978-3-031-18050-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)