Skip to main content

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 531))

  • 535 Accesses

Abstract

Regression methods aim to predict a numerical value of a target variable given some input variables by building a function \(f:\mathbb {R}^n \rightarrow \mathbb {R}\). In Industry 4.0 regression tasks, tabular data-sets are especially frequent. Decision Trees, ensemble methods such as Gradient Boosting and Random Forest, or Support Vector Machines are widely used for regression tasks with tabular data. However, Deep Learning approaches are rarely used with this type of data, due to, among others, the lack of spatial correlation between features. Therefore, in this research, we propose two Deep Learning approaches for working with tabular data. Specifically, two Convolutional Neural Networks architectures are tested against different state of the art regression methods. We perform an hyper-parameter tuning of all the techniques and compare the model performance in different industrial tabular data-sets. Experimental results show that both Convolutional Neural Network approaches can outperform the commonly used methods for regression tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waibel, M., Oosthuizen, G., Du Toit, D.: Proc. Manuf. 21, 774 (2018)

    Google Scholar 

  2. Oesterreich, T.D., Teuteberg, F.: Comput. Ind. 83, 121 (2016)

    Google Scholar 

  3. Vaidya, S., Ambad, P., Bhosle, S.: Proc. Manuf. 20, 233 (2018)

    Google Scholar 

  4. Shwartz-Ziv, R., Armon, A.: (2021). https://openreview.net/forum?id=vdgtepS1pV

  5. Saufi, S.R., Ahmad, Z.A.B., Leong, M.S., Lim, M.H.: IEEE Access 7, 122644 (2019)

    Google Scholar 

  6. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(5), 723 (2013)

    Google Scholar 

  7. Jin, S., Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(6), 985 (2015)

    Google Scholar 

  8. Lin, C.C., Deng, D.J., Kuo, C.H., Chen, L.: IEEE Access 7, 56198 (2019)

    Google Scholar 

  9. Lee, T., Lee, K.B., Kim, C.O.: IEEE Trans. Semicond. Manuf. 29(4), 436 (2016)

    Google Scholar 

  10. Carvalho, T.P., Soares, F.A., Vita, R., Francisco, Rd.P., Basto, J.P., Alcalá, S.G.: Comput. Ind. Eng. 137, 106024 (2019)

    Google Scholar 

  11. Susto, G.A., Schirru, A., Pampuri, S., McLoone, S., Beghi, A.: IEEE Trans. Industr. Inf. 11(3), 812 (2014)

    Google Scholar 

  12. Kanawaday, A., Sane, A.: In: 2017 8th IEEE International Conference on Software Engineering and Service Science (ICSESS), pp. 87–90. IEEE (2017)

    Google Scholar 

  13. Paolanti, M., Romeo, L., Felicetti, A., Mancini, A., Frontoni, E., Loncarski, J.: In: 2018 14th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), pp. 1–6. IEEE (2018)

    Google Scholar 

  14. Mathew, V., Toby, T., Singh, V., Rao, B.M., Kumar, M.G.: In: 2017 IEEE International Conference on Circuits and Systems (ICCS), pp. 306–311. IEEE (2017)

    Google Scholar 

  15. Carroll, J., Koukoura, S., McDonald, A., Charalambous, A., Weiss, S., McArthur, S.: Wind Energy 22(3), 360 (2019)

    Google Scholar 

  16. Elforjani, M., Shanbr, S.: IEEE Trans. Industr. Electron. 65(7), 5864 (2017)

    Google Scholar 

  17. Wu, M., Song, Z., Moon, Y.B.: J. Intell. Manuf. 30(3), 1111 (2019)

    Google Scholar 

  18. Touzani, S., Granderson, J., Fernandes, S.: Energy Buildings 158, 1533 (2018)

    Google Scholar 

  19. Boto, F., Murua, M., Gutierrez, T., Casado, S., Carrillo, A., Arteaga, A.: Metals 12(2), 172 (2022)

    Google Scholar 

  20. Tong, Z., Miao, J., Tong, S., Lu, Y.: J. Cleaner Prod. 317, 128265 (2021)

    Google Scholar 

  21. Zhang, Y., Xiong, R., He, H., Pecht, M.G.: IEEE Trans. Veh. Technol. 67(7), 5695 (2018)

    Google Scholar 

  22. Zhang, H., Zhang, Q., Shao, S., Niu, T., Yang, X.: IEEE Access 8, 132188 (2020)

    Google Scholar 

  23. Sohaib, M., Kim, C.H., Kim, J.M.: Sensors 17(12), 2876 (2017)

    Google Scholar 

  24. Luo, B., Wang, H., Liu, H., Li, B., Peng, F.: IEEE Trans. Industr. Electron. 66(1), 509 (2018)

    Google Scholar 

  25. Terrazas, G., Martínez-Arellano, G., Benardos, P., Ratchev, S.: J. Manuf. Mater. Proc. 2(4), 72 (2018)

    Google Scholar 

  26. Kiangala, K.S., Wang, Z.: IEEE Access 8, 121033 (2020)

    Google Scholar 

  27. Saeed, F., Paul, A., Rho, S.: In: International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, pp. 280–287. Springer (2020)

    Google Scholar 

  28. Arık, S.O., Pfister, T.: arXiv (2020)

    Google Scholar 

  29. Popov, S., Morozov, S., Babenko, A.: arXiv preprint arXiv:1909.06312 (2019)

  30. Abutbul, A., Elidan, G., Katzir, L., El-Yaniv, R.: arXiv preprint arXiv:2006.06465 (2020)

  31. baosenguo. Kaggle-MoA 2nd Place Solution (2021). https://github.com/baosenguo/Kaggle-MoA-2nd-Place-Solution. Original-date: 2020-12-09T02:24:45Z

  32. Eren, L., Ince, T., Kiranyaz, S.: J. Signal Process. Syst. 91(2), 179 (2019)

    Google Scholar 

  33. Yao, D., Li, B., Liu, H., Yang, J., Jia, L.: Measurement 175, 109166 (2021)

    Google Scholar 

  34. Ortego, P., Diez-Olivan, A., Del Ser, J., Veiga, F., Penalva, M., Sierra, B.: Swarm Evol. Comput. 54, 100650 (2020)

    Google Scholar 

  35. Zhu, Y., et al.: Sci. Rep. 11(1), 1 (2021)

    Article  Google Scholar 

  36. Sun, B.: In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  37. Seber, G.A., Lee, A.J.: Linear Regression Analysis, vol. 329. John Wiley & Sons (2012)

    Google Scholar 

  38. Rokach, L., Maimon, O.: In: Data Mining and Knowledge Discovery Handbook, pp. 165–192, Springer (2005). https://doi.org/10.1007/b107408

  39. Breiman, L.: Mach. Learn. 45(1), 5 (2001)

    Google Scholar 

  40. Friedman, J.H.: North 1(3), 1 (1999)

    Google Scholar 

  41. Cortes, C., Vapnik, V.: Mach. Learn. 20(3), 273 (1995)

    Google Scholar 

  42. O’Shea, K., Nash, R.: arXiv preprint arXiv:1511.08458 (2015)

  43. Jin, H., Song, Q., Hu, X.: In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1946–1956. ACM (2019)

    Google Scholar 

  44. Fandrich, R., Lüngen, H.B., Wuppermann, C.D.: Metall. Res. Technol. 105(7–8), 364 (2008)

    Google Scholar 

  45. Chollet, F.: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Boto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moles, L., Boto, F., Echegaray, G., Torre, I.G. (2023). Convolutional Neural Networks for Structured Industrial Data. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_35

Download citation

Publish with us

Policies and ethics