Skip to main content

Abstract

To achieve the prediction of SO2(t + 1) concentration values in the area of the Bay of Algeciras, Autoencoders (AE) and Sparse Autoencoders (SAE) have been applied to analyse air quality in this complex zone. A three-year hourly database of air pollutants, meteorological and vessel data were used to test different prediction scenarios. The data were divided into disjoint quartiles (Q1–Q4). AE models are better performed in the medium values (quartiles Q2 and Q3) and SAE models produce equivalent results in low and high values (Q1 and Q4). The results show that AE layers can be stacked to configure a more complex network with different levels of the sparsity of dimensions, together with a final supervised layer for the prediction of the index of the SO2 level (quartiles Q1–Q4).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. González-Enrique, J., Turias, I.J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Franco, L.: Spatial and meteorological relevance in NO2 estimations: a case study in the Bay of Algeciras (Spain). Stoch. Environ. Res. Risk Assess. 33, 801–815 (2019)

    Article  Google Scholar 

  2. González-Enrique, J., Ruiz-Aguilar, J.J., Moscoso-López, J.A., Urda, D., Turias, I.J.: A comparison of ranking filter methods applied to the estimation of NO2 concentrations in the Bay of Algeciras (Spain). Stoch. Env. Res. Risk Assess. 35, 1999–2019 (2021)

    Article  Google Scholar 

  3. Moscoso-López, J.A., Urda, D., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J.: Hourly air quality index (AQI) forecasting using machine learning methods. In: Herrero, Á., Cambra, C., Urda, D., Sedano, J., Quintián, H., Corchado, E. (eds.) SOCO 2020. AISC, vol. 1268, pp. 123–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-57802-2_12

    Chapter  Google Scholar 

  4. Rodríguez-García, M.I., González-Enrique, J., Moscoso-López, J.A., Ruiz-Aguilar, J.J., Rodríguez-López, J., Turias, I.J.: Comparison of maritime transport influence of SO2 levels in Algeciras and Alcornocales Park (Spain). In: XIV Conference on Transport Engineering, CIT2021, vol. 58, pp. 2352–1465 (2021)

    Google Scholar 

  5. Akin, Y., Cansu, Z., Oktay, H.: Air pollution modelling with deep learning: a review. Int. J. Environ. Pollut. Environ. Model. 1(3), 58–62 (2018)

    Google Scholar 

  6. Li, X., Peng, L., Hu, Y., Shao, J., Chi, T.: Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 23, 22048–22417 (2016)

    Article  Google Scholar 

  7. Bo Zhang, B., Zhang, H., Zhao, G., Lian, J.: Constructing a PM2.5 concentration prediction model by combining autoencoder with Bi-LSTM neural networks. Environ. Model. Softw. 124 (2020)

    Google Scholar 

  8. Liao, Q., Zhu, M., Wu, L., Pan, X., Tang, X., Wang, Z.: Deep learning for air quality forecasts: a review. Curr. Pollut. Rep. 6, 399–499 (2020)

    Article  Google Scholar 

  9. Mengara, A.G., Park, E., Jang, J., Yoo, Y.: Attention-based distributed deep learning model for air quality forecasting. Sustainability 14(6), 3269 (2022)

    Article  Google Scholar 

  10. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  11. Baldorj, B., Tsagaan, M., Sereeter, L., Bulkhbai, A.: Embedded generative air pollution model with variational autoencoder and environmental factor effect in Ulaanbaatar city. Atmosphere 13(1), 71 (2022)

    Article  Google Scholar 

  12. Xayasouk, T., Lee, H.: Air pollution prediction system using deep learning. WIT Trans. Ecol. Environ. 230 (2018)

    Google Scholar 

  13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323, 533–536 (1986)

    Article  Google Scholar 

  14. Baldi, P., Lu, Z.: Complex-valued autoencoders. Neural Netw. 33, 136–147 (2012)

    Article  Google Scholar 

  15. Makhzani, A., Frey, B.: k-Sparse autoencoders. In: 2nd International Conference on Learning Representations, ICLR 2014 – Conference Track Proceedings (2014)

    Google Scholar 

  16. Tino, P., Benuskova, L., Sperduti, A.: Artificial Neural Network Models, pp. 455–471. Springer Handbook of Computational Intelligence (2015)

    Google Scholar 

  17. Bland, J.M., Altman, D.G.: Multiple significance tests: the Bonferroni method. BMJ 310(6973), 170 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the research project RTI2018-098160-B-I00 supported by ‘MICINN’ Programa Estatal de I+D+i Orientada a ‘Los Retos de la Sociedad’. Data used in this work have been kindly provided by the Algeciras Bay Port Authority and the Andalusian Regional Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Rodríguez-García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rodríguez-García, M.I., González-Enrique, J., Ruiz-Aguilar, J.J., Turias, I.J. (2023). A SO2 Pollution Concentrations Prediction Approach Using Autoencoders. In: García Bringas, P., et al. 17th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2022). SOCO 2022. Lecture Notes in Networks and Systems, vol 531. Springer, Cham. https://doi.org/10.1007/978-3-031-18050-7_5

Download citation

Publish with us

Policies and ethics