Skip to main content

A Decentralized Ride-Hailing Mode Based on Blockchain and Attribute Encryption

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2022)

Abstract

With the development of smart transportation, ride-hailing applications have become an essential part of people’s lives. These ride-hailing apps provide convenience of contacting taxi for passengers. However, most present ride-hailing or ride-sharing systems rely on a trusted third party. It makes them be attacked vulnerably. A decentralized block-chain-based ride-hailing mode with attribute encryption is proposed in this paper. Attribute-based encryption is applied to ensure the drivers who meet the passenger’s requirements can obtain the passenger’s order in this mode. After the transaction has completed, the transaction information is saved on the blockchain. This mode supports the investigation of historical records via the blockchain technology. Besides, a new payment protocol is used in this mode. The new payment protocol is based on trip distance. It applies smart contract and zero-knowledge set membership proof. The reputation of drivers based on drivers’ past behavior is designed. The driver’s reputation will be updated after the transaction is completed. Passengers can choose a driver with high reputation. Each phase of this mode is simulated in our test net of Ethereum. The results prove that this ride-hailing mode is efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sherif, A.B., Rabieh, K., Mahmoud, M.M., Liang, X.: Privacy-preserving ride sharing scheme for autonomous vehicles in big data era. IEEE IoT J. 4(2), 611–618 (2016)

    Google Scholar 

  2. Cao, B., Alarabi, L., Mokbel, M. F., Basalamah, A.: SHAREK: a scalable dynamic ride sharing system. In 2015 16th IEEE International Conference on Mobile Data Management, vol. 1, pp. 4–13. IEEE (2015)

    Google Scholar 

  3. Engelhardt, R., Dandl, F., Bilali, A., Bogenberger, K.: Quantifying the benefits of autonomous on-demand ride-pooling: a simulation study for Munich, Germany. In: 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2992–2997. IEEE (2019)

    Google Scholar 

  4. Dandl, F., Bogenberger, K.: Comparing future autonomous electric taxis with an existing free-floating carsharing system. IEEE Trans. Intell. Transp. Syst. 20(6), 2037–2047 (2018)

    Article  Google Scholar 

  5. Shi, J., Gao, Y., Wang, W., Yu, N., Ioannou, P.A.: Operating electric vehicle fleet for ride-hailing services with reinforcement learning. IEEE Trans. Intell. Transp. Syst. 21(11), 4822–4834 (2019)

    Article  Google Scholar 

  6. Guo, G., Xu, Y.: A deep reinforcement learning approach to ride-sharing vehicle dispatching in autonomous mobility-on-demand systems. IEEE Intell. Transp. Syst. Mag. 14(1), 128–140 (2022)

    Google Scholar 

  7. Lam, A.Y., Leung, Y.W., Chu, X.: Autonomous-vehicle public transportation system: scheduling and admission control. IEEE Trans. Intell. Transp. Syst. 17(5), 1210–1226 (2016)

    Article  Google Scholar 

  8. Zhu, M., Liu, X.Y., Wang, X.: An online ride-sharing path-planning strategy for public vehicle systems. IEEE Trans. Intell. Transp. Syst. 20(2), 616–627 (2018)

    Article  Google Scholar 

  9. Zeng, W., Han, Y., Sun, W., Xie, S.: Exploring the ridesharing efficiency of taxi services. IEEE Access 8, 160396–160406 (2020)

    Article  Google Scholar 

  10. Aïvodji, U.M., Huguenin, K., Huguet, M.J., Killijian, M.O.: SRide: a privacy-preserving ridesharing system. In: Proceedings of the 11th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 40–50 (2018)

    Google Scholar 

  11. He, Y., Ni, J., Wang, X., Niu, B., Li, F., Shen, X.: Privacy-preserving partner selection for ride-sharing services. IEEE Trans. Veh. Technol. 67(7), 5994–6005 (2018)

    Google Scholar 

  12. Yuan, Y., Wang, F.Y.: Towards blockchain-based intelligent transportation systems. In: 2016 IEEE 19th international conference on intelligent transportation systems (ITSC), pp. 2663–2668. IEEE (2016)

    Google Scholar 

  13. Li, M., Zhu, L., Lin, X.: Efficient and privacy-preserving carpooling using blockchain-assisted vehicular fog computing. IEEE IoT J. 6(3), 4573–4584 (2018)

    Google Scholar 

  14. Baza, M., Lasla, N., Mahmoud, M.M., Srivastava, G., Abdallah, M.: B-ride: ride sharing with privacy-preservation, trust and fair payment atop public blockchain. IEEE Trans. Netw. Sci. Eng. 8(2), 1214–1229 (2019)

    Article  Google Scholar 

  15. Baza, M., Mahmoud, M., Srivastava, G., Alasmary, W., Younis, M.: A light blockchain-powered privacy-preserving organization scheme for ride sharing services. In: 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring), pp. 1–6. IEEE. (2020)

    Google Scholar 

  16. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)

    Google Scholar 

  17. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: 2013 IEEE Symposium on Security and Privacy, pp. 397–411. IEEE (2013)

    Google Scholar 

  18. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy, pp. 459–474. IEEE (2014)

    Google Scholar 

  19. Schwartz, D., Youngs, N., Britto, A.: The ripple protocol consensus algorithm. Ripple Labs Inc White Pap. 5(8), 151 (2014)

    Google Scholar 

  20. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_27

    Chapter  Google Scholar 

  21. Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy attribute-based threshold decryption with flexible delegation and revocation of user attributes. IEEE Trans. Image process (2009)

    Google Scholar 

  22. Koens, T., Ramaekers, C., Van Wijk, C.: Efficient zero-knowledge range proofs in ethereum. ING, blockchain@ing.com (2018)

    Google Scholar 

  23. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient protocols for set membership and range proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89255-7_15

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Zhou, Y., Hu, Y., Huang, H. (2022). A Decentralized Ride-Hailing Mode Based on Blockchain and Attribute Encryption. In: Chen, X., Shen, J., Susilo, W. (eds) Cyberspace Safety and Security. CSS 2022. Lecture Notes in Computer Science, vol 13547. Springer, Cham. https://doi.org/10.1007/978-3-031-18067-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18067-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18066-8

  • Online ISBN: 978-3-031-18067-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics