Skip to main content

Efficient and Collusion Resistant Multi-party Private Set Intersection Protocols for Large Participants and Small Sets Setting

  • Conference paper
  • First Online:
Cyberspace Safety and Security (CSS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13547))

Included in the following conference series:

  • 992 Accesses

Abstract

Multi-party private set intersection (MP-PSI) allows m participants with private sets to calculate their intersection without revealing any information, which is quite different from the traditional two-party PSI. Although some efficient MP-PSI protocols already exist, the efficiency of these protocols decreases significantly in the scenarios with the increasing number of participants for the small sets setting. In this paper, we propose efficient MP-PSI protocols based on one-round two-party key agreement embedding with unconditional zero sharing technique and prove secure by resisting up to \(m-2\) parties collision in the semi-honest model and \(m-1\) parties collision in the malicious model. Compared with the current efficient MP-PSI, our protocol performs better in terms of the communication round, communication cost and the running time in small sets setting. Extensive experiments show that as the number of participants m increases from 5 to 50 and the upbound of the set size n scales from \(2^8\) to \(2^{10}\), the running time of our MP-PSI protocol is faster than those of the most efficient MP-PSI protocol [14] and the recent work [4]. Take the set size at \(2^{7}\) for example, as the number of the participants increases from 10 to 50, our protocol only requires 4–26\(\times \) less running time and 8–11\(\times \) less communication cost than those of [14], respectively. We conclude that our protocols are practical solutions suitable for the scenarios in small set setting with increasing participants.

This work is supported in part by National Natural Science Foundation of China under Grant 61972241, in part by Natural Science Foundation of Shanghai under Grant 22ZR1427100 and 18ZR1417300, and in part by Luo-Zhaorao College Student Science and Technology Innovation Foundation of Shanghai Ocean University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GATTACA: efficient and secure testing of fully-sequenced human genomes. In: Proceedings of the 18th ACM Conference on Computer and Communications Security (ACM CCS 2011), pp. 691–702. ACM (2011)

    Google Scholar 

  2. Miao, P., Patel, S., Raykova, M., Seth, K., Yung, M.: Two-sided malicious security for private intersection-sum with cardinality. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 3–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_1

    Chapter  Google Scholar 

  3. Heinrich, A., Hollick, M., Schneider, T., Stute, M., Weinert, C.: PrivateDrop: practical privacy-preserving authentication for apple airdrop. In: 30th USENIX Security Symposium (USENIX Security 2021), pp. 3577–3594. USENIX Association (2021)

    Google Scholar 

  4. Bay, A., Erkin, Z., Alishahi, M., Vos, J.: Practical multi-party private set intersection protocols. IEEE Trans. Inf. Forensics Secur. 17, 1–15 (2022). https://doi.org/10.1109/TIFS.2021.3118879

    Article  Google Scholar 

  5. Bay, A., Erkin, Z., Alishahi, M., Vos, J.: Multi-party private set intersection protocols for practical applications. IEEE Trans. Inf. Forensics Secur. (2021). (SECRYPT 2021), pp. 515–522. SciTePress

    Google Scholar 

  6. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_9

    Chapter  Google Scholar 

  7. Kolesnikov, V., Kumaresan, R.: Improved OT extension for transferring short secrets. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 54–70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_4

    Chapter  Google Scholar 

  8. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE: improved constructions and implementation. In: 26th ACM Conference on Computer and Communications Security (ACM CCS 2019), pp. 1055–1072. ACM (2019)

    Google Scholar 

  9. Kolesnikov, V., Kumaresan, R., Rosulek, M., Trieu, N.: Efficient batched oblivious PRF with applications to private set intersection. In: 23rd ACM Conference on Computer and Communications Security (ACM CCS 2016), pp. 818–829. ACM (2016)

    Google Scholar 

  10. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: SpOT-Light: lightweight private set intersection from sparse OT extension. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 401–431. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_13

    Chapter  Google Scholar 

  11. Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: PSI from PaXoS: fast, malicious private set intersection. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 739–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_25

    Chapter  Google Scholar 

  12. Chase, M., Miao, P.: Private set intersection in the internet setting from lightweight oblivious PRF. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12172, pp. 34–63. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56877-1_2

    Chapter  Google Scholar 

  13. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-psi from vector-OLE. IACR Cryptology ePrint Archive 2021/266 (2021)

    Google Scholar 

  14. Kolesnikov, V., Matania, N., Pinkas, B., Rosulek, M., Trieu, N.: Practical multi-party private set intersection from symmetric-key techniques. In: 24th ACM Conference on Computer and Communications Security (ACM CCS 2017), pp. 1257–1272. ACM (2017)

    Google Scholar 

  15. Chen, H., Laine, K., Rindal, P.: Fast private set intersection from homomorphic encryption. In: 24th ACM Conference on Computer and Communications Security (ACM CCS 2017), pp. 1243–1255. ACM (2017)

    Google Scholar 

  16. Davi Resende, A.C., de Freitas Aranha, D.: Faster unbalanced Private Set Intersection in the semi-honest setting. J. Cryptogr. Eng. 11(1), 21–38 (2020). https://doi.org/10.1007/s13389-020-00242-7

    Article  Google Scholar 

  17. Rosulek, M., Trieu, N.: Compact and malicious private set intersection for small sets. In: 28th ACM Conference on Computer and Communications Security (ACM CCS 2021), pp. 1166–1181. ACM (2021)

    Google Scholar 

  18. Meadows, C.A.: A more efficient cryptographic matchmaking protocol for use in the absence of a continuously available third party. In: IEEE Symposium on Security and Privacy (IEEE S &P 1986), pp. 134–137. IEEE (1986)

    Google Scholar 

  19. Huberman, B.A., Franklin, M., Hogg, T.: Proceedings of the 1st ACM Conference on Electronic Commerce, pp. 78–86 (1999)

    Google Scholar 

  20. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT extension. In: 23rd USENIX Security Symposium (USENIX Security 2014), pp. 797–812. USENIX Association (2014)

    Google Scholar 

  21. Chandran, N., Dasgupta, N., Gupta, D., Obbattu, S.L.B., Sekar, S., Shah, A.: Efficient linear multiparty PSI and extensions to circuit/quorum PSI. In: 28th ACM Conference on Computer and Communications Security (ACM CCS 2021), pp. 1182–1204. ACM (2021)

    Google Scholar 

  22. Hazay, C., Venkitasubramaniam, M.: Scalable multi-party private set-intersection. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10174, pp. 175–203. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_8

    Chapter  Google Scholar 

  23. Hao, F., Zieliński, P.: A 2-round anonymous veto protocol. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2006. LNCS, vol. 5087, pp. 202–211. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04904-0_28

    Chapter  Google Scholar 

  24. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve points indistinguishable from uniform random strings. In: 20th ACM Conference on Computer and Communications Security (ACM CCS 2013), pp. 967–980. ACM (2013)

    Google Scholar 

  25. Garimella, G., Pinkas, B., Rosulek, M., Trieu, N., Yanai, A.: Oblivious key-value stores and amplification for private set intersection. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 395–425. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_14

    Chapter  Google Scholar 

  26. Nevo, O., Trieu, N., Yanai, A.: Simple, fast malicious multiparty private set intersection. In: 28th ACM Conference on Computer and Communications Security (ACM CCS 2021), pp. 1151–1165. ACM (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, L., Liu, J., Zhang, L., Zhang, W. (2022). Efficient and Collusion Resistant Multi-party Private Set Intersection Protocols for Large Participants and Small Sets Setting. In: Chen, X., Shen, J., Susilo, W. (eds) Cyberspace Safety and Security. CSS 2022. Lecture Notes in Computer Science, vol 13547. Springer, Cham. https://doi.org/10.1007/978-3-031-18067-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18067-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18066-8

  • Online ISBN: 978-3-031-18067-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics