Abstract
Cartesian genetic programming is a popular version of genetic programming and has meanwhile proven its performance in many use cases. This paper introduces an algorithmic level decomposition of program evolution that can be solved by a multi-agent system in a fully distributed manner. A heuristic for distributed combinatorial problem solving is adapted to evolve programs. The applicability of the approach and the effectiveness of the multi-agent approach as well as of the evolved genetic programs are demonstrated using symbolic regression, n-parity, and classification problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Miller, J.F., et al.: An empirical study of the efficiency of learning boolean functions using a cartesian genetic programming approach. In: Proceedings of the Genetic and Evolutionary Computation Conference, vol. 2, pp. 1135–1142 (1999)
Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program Evolvable Mach. 21(1), 129–168 (2020)
Harding, S., Leitner, J., Schmidhuber, J.: Cartesian genetic programming for image processing. In: Riolo, R., Vladislavleva, E., Ritchie, M., Moore, J. (eds.) Genetic Programming Theory and Practice X. Genetic and Evolutionary Computation, pp. 31–44. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6846-2_3
Suganuma, M., Kobayashi, M., Shirakawa, S., Nagao, T.: Evolution of deep convolutional neural networks using CGP. Evol. Comput. 28(1), 141–163 (2020)
Parziale, A., Senatore, R., Della Cioppa, A., Marcelli, A.: Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: performance vs. interpretability issues. Artif. Intell. Med. 111, 101984 (2021)
Ahmad, A.M., Muhammad Khan, G., Mahmud, S.A.: Classification of arrhythmia types using cartesian genetic programming evolved artificial neural networks. In: Iliadis, L., Papadopoulos, H., Jayne, C. (eds.) EANN 2013. CCIS, vol. 383, pp. 282–291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41013-0_29
Clegg, J., Walker, J.A., Miller, J.F.: A new crossover technique for cartesian genetic programming. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, pp. 1580–1587 (2007)
Turner, A.J., Miller, J.F.: Recurrent cartesian genetic programming. In: Bartz-Beielstein, T., Branke, J., Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 476–486. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10762-2_47
Goldman, B.W., Punch, W.F.: Reducing wasted evaluations in cartesian genetic programming. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş, Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37207-0_6
Walker, J.A., Völk, K., Smith, S.L., Miller, J.F.: Parallel evolution using multi-chromosome cartesian genetic programming. Genet. Program Evolvable Mach. 10(4), 417 (2009). https://doi.org/10.1007/s10710-009-9093-2
Bremer, J., Lehnhoff, S.: Towards evolutionary emergence. Ann. Comput. Sci. Inf. Syst. 26, 55–60 (2021)
Poli, R.: Parallel distributed genetic programming. University of Birmingham, Cognitive Science Research Centre (1996)
Talbi, E.G.: Metaheuristics: From Design to Implementation, vol. 74. Wiley, New York (2009)
Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching decentralized demand side management via self-organizing agents. In: ATES Workshop (2011)
Hinrichs, C., Sonnenschein, M., Lehnhoff, S.: Evaluation of a self-organizing heuristic for interdependent distributed search spaces. In: Filipe, J., Fred, A.L.N. (eds.) International Conference on Agents and Artificial Intelligence (ICAART 2013) - Agents, vol. 1, pp. 25–34. SciTePress (2013)
Potter, M.A., Jong, K.A.D.: Cooperative coevolution: an architecture for evolving coadapted subcomponents. Evol. Comput. 8(1), 1–29 (2000)
Bremer, J., Lehnhoff, S.: The effect of laziness on agents for large scale global optimization. In: van den Herik, J., Rocha, A.P., Steels, L. (eds.) ICAART 2019. LNCS (LNAI), vol. 11978, pp. 317–337. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37494-5_16
Sotto, L.F.D.P., Kaufmann, P., Atkinson, T., Kalkreuth, R., Basgalupp, M.P.: A study on graph representations for genetic programming. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference, GECCO 2020, New York, NY, USA, pp. 931–939. Association for Computing Machinery (2020)
Miller, J.: Cartesian Genetic Programming, vol. 43. Springer, Heidelberg (2003)
Miller, J.F., Thomson, P., Fogarty, T.: Designing electronic circuits using evolutionary algorithms. Arithmetic circuits: a case study. Genet. Algorithms Evol. Strateg. Eng. Comput. Sci. 105–131 (1997)
Khan, M.M., Ahmad, A.M., Khan, G.M., Miller, J.F.: Fast learning neural networks using cartesian genetic programming. Neurocomputing 121, 274–289 (2013)
Harding, S., Banzhaf, W., Miller, J.F.: A survey of self modifying cartesian genetic programming. In: Riolo, R., McConaghy, T., Vladislavleva, E. (eds.) Genetic Programming Theory and Practice VIII. Genetic and Evolutionary Computation, vol. 8, pp. 91–107. Springer, New York (2011). https://doi.org/10.1007/978-1-4419-7747-2_6
Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic for the scheduling of energy resources represented by self-interested agents. Int. J. Bio-Inspired Comput. 10(2), 69–78 (2017)
Bremer, J., Lehnhoff, S.: Decentralized coalition formation with agent-based combinatorial heuristics. Adv. Distrib. Comput. Artif. Intell. 6(3), 29–44 (2017)
Tong, B., Liu, Q., Dai, C., Jia, Z.: A decentralized multiple MAV collision avoidance trajectory planning method. In: 2020 Chinese Automation Congress (CAC), pp. 1545–1552 (2020)
Bremer, J., Lehnhoff, S.: Decentralized surplus distribution estimation with weighted k-majority voting games. In: Bajo, J., et al. (eds.) PAAMS 2017. CCIS, vol. 722, pp. 327–339. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60285-1_28
Sonnenschein, M., Lünsdorf, O., Bremer, J., Tröschel, M.: Decentralized control of units in smart grids for the support of renewable energy supply. Environ. Impact Assess. Rev. 52, 40–52 (2014)
Watts, D., Strogatz, S.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)
Nieße, A., Beer, S., Bremer, J., Hinrichs, C., Lünsdorf, O., Sonnenschein, M.: Conjoint dynamic aggregation and scheduling methods for dynamic virtual power plants. In: Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of the 2014 Federated Conference on Computer Science and Information Systems. Annals of Computer Science and Information Systems, vol. 2, pp. 1505–1514 (2014)
Bremer, J., Lehnhoff, S.: Lazy agents for large scale global optimization. In: ICAART (1), pp. 72–79 (2019)
Oranchak, D.: Cartesian genetic programming for the Java EC toolkit (2010)
Inácio, T., Miragaia, R., Reis, G., Grilo, C., Fernandéz, F.: Cartesian genetic programming applied to pitch estimation of piano notes. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–7. IEEE (2016)
Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-540-46239-2_9
Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs. MIT, Cambridge (1994)
Koza, J.R., Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, vol. 1. MIT Press, Cambridge (1992)
Christensen, S., Oppacher, F.: An analysis of Koza’s computational effort statistic for genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A. (eds.) EuroGP 2002. LNCS, vol. 2278, pp. 182–191. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45984-7_18
Gathercole, C., Ross, P.: Tackling the boolean even n parity problem with genetic programming and limited-error fitness. Genet. Program. 97, 119–127 (1997)
Poli, R., Page, J.: Solving high-order boolean parity problems with smooth uniform crossover, sub-machine code GP and demes. Genet. Program Evolvable Mach. 1(1), 37–56 (2000)
Mambrini, A., Oliveto, P.S.: On the analysis of simple genetic programming for evolving boolean functions. In: Heywood, M.I., McDermott, J., Castelli, M., Costa, E., Sim, K. (eds.) EuroGP 2016. LNCS, vol. 9594, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30668-1_7
Parent, J., Nowé, A., Defaweux, A.: Addressing the even-n-parity problem using compressed linear genetic programming. In: Late Breaking Paper at Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, DC, USA, pp. 25–29 (2005)
Muntean, O., Diosan, L., Oltean, M.: Solving the even-n-parity problems using best subtree genetic programming. In: Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS 2007), pp. 511–518. IEEE (2007)
Koza, J.R., Andre, D., Bennett, F.H., III, Keane, M.A.: Use of automatically defined functions and architecture-altering operations in automated circuit synthesis with genetic programming. In: Proceedings of the First Annual Conference on Genetic Programming, pp. 132–140. Stanford University, MIT Press, Cambridge (1996)
Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)
Chakraborty, I., Nandanoori, S.P., Kundu, S., Kalsi, K.: Data-driven predictive flexibility modeling of distributed energy resources. In: Sayed-Mouchaweh, M. (ed.) Artificial Intelligence Techniques for a Scalable Energy Transition, pp. 311–343. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42726-9_12
Bremer, J., Sonnenschein, M.: Model-based integration of constrained search spaces into distributed planning of active power provision. Comput. Sci. Inf. Syst. 10(4), 1823–1854 (2013)
Pinto, R., Matos, M.A., Bessa, R.J., Gouveia, J., Gouveia, C.: Multi-period modeling of behind-the-meter flexibility. In: 2017 IEEE Manchester PowerTech, pp. 1–6 (2017)
Bremer, J., Rapp, B., Sonnenschein, M.: Encoding distributed search spaces for virtual power plants. In: Computational Intelligence Applications In Smart Grid (CIASG), 2011 IEEE Symposium Series on Computational Intelligence (SSCI), Paris, France, April 2011
Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54(1), 45–66 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bremer, J., Lehnhoff, S. (2022). Fully Distributed Cartesian Genetic Programming. In: Dignum, F., Mathieu, P., Corchado, J.M., De La Prieta, F. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Complex Systems Simulation. The PAAMS Collection. PAAMS 2022. Lecture Notes in Computer Science(), vol 13616. Springer, Cham. https://doi.org/10.1007/978-3-031-18192-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-18192-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18191-7
Online ISBN: 978-3-031-18192-4
eBook Packages: Computer ScienceComputer Science (R0)