Skip to main content

Maximizing Extractable Value from Automated Market Makers

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13411))

Included in the following conference series:

  • 1642 Accesses

Abstract

Automated Market Makers (AMMs) are decentralized applications that allow users to exchange crypto-tokens without the need for a matching exchange order. AMMs are one of the most successful DeFi use cases: indeed, major AMM platforms process a daily volume of transactions worth USD billions. Despite their popularity, AMMs are well-known to suffer from transaction-ordering issues: adversaries can influence the ordering of user transactions, and possibly front-run them with their own, to extract value from AMMs, to the detriment of users. We devise an effective procedure to construct a strategy through which an adversary can maximize the value extracted from user transactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We name it after Dagwood Bumstead, a comic strip character who is often illustrated while producing enormous multi-layer sandwiches.

References

  1. Curve statistics (2020). https://www.curve.fi/dailystats

  2. Flashbots (2021). https://github.com/flashbots/pm

  3. Optimism website (2021). https://optimism.io/

  4. Starkware website (2021). https://starkware.co/

  5. SushiSwap statistics (2021). https://analytics.sushi.com/

  6. SushiSwap token pair implementation (2021). https://github.com/sushiswap/sushiswap/blob/94ea7712daaa13155dfab9786aacf69e24390147/contracts/uniswapv2/UniswapV2Pair.sol

  7. Uniswap token pair implementation (2021). https://github.com/Uniswap/uniswap-v2-core/blob/4dd59067c76dea4a0e8e4bfdda41877a6b16dedc/contracts/UniswapV2Pair.sol

  8. Uniswap V2 statistics (2021). https://v2.info.uniswap.org/

  9. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: A theory of automated market makers in DeFi. In: Damiani, F., Dardha, O. (eds.) COORDINATION 2021. LNCS, vol. 12717, pp. 168–187. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78142-2_11

    Chapter  Google Scholar 

  10. Bartoletti, M., Chiang, J.H., Lluch-Lafuente, A.: Maximizing extractable value from automated market makers. CoRR abs/2106.01870 (2021). https://arxiv.org/abs/2106.01870

  11. Baum, C., David, B., Frederiksen, T.K.: P2DEX: privacy-preserving decentralized cryptocurrency exchange. In: Sako, K., Tippenhauer, N.O. (eds.) ACNS 2021. LNCS, vol. 12726, pp. 163–194. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78372-3_7

    Chapter  Google Scholar 

  12. Breidenbach, L., Daian, P., Tramèr, F., Juels, A.: Enter the Hydra: towards principled bug bounties and exploit-resistant smart contracts. In: USENIX Security Symposium, pp. 1335–1352. USENIX Association (2019)

    Google Scholar 

  13. Ciampi, M., Ishaq, M., Magdon-Ismail, M., Ostrovsky, R., Zikas, V.: FairMM: a fast and frontrunning-resistant crypto market-maker. Cryptology ePrint Archive, Report 2021/609 (2021). https://eprint.iacr.org/2021/609

  14. Daian, P., et al.: Flash boys 2.0: frontrunning in decentralized exchanges, miner extractable value, and consensus instability. In: IEEE Symposium on Security and Privacy, pp. 910–927. IEEE (2020). https://doi.org/10.1109/SP40000.2020.00040

  15. Engel, D., Herlihy, M.: Composing networks of automated market makers. In: Advances in Financial Technologies (AFT), pp. 15–28. ACM (2021). https://doi.org/10.1145/3479722.3480987

  16. Eskandari, S., Moosavi, S., Clark, J.: SoK: transparent dishonesty: front-running attacks on blockchain. In: Bracciali, A., Clark, J., Pintore, F., Rønne, P.B., Sala, M. (eds.) FC 2019. LNCS, vol. 11599, pp. 170–189. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43725-1_13

    Chapter  Google Scholar 

  17. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: how dark is the forest? (2021). https://arxiv.org/abs/2101.05511

  18. Werner, S.M., Perez, D., Gudgeon, L., Klages-Mundt, A., Harz, D., Knottenbelt, W.J.: SoK: decentralized finance (DeFi). CoRR abs/2101.08778 (2021)

    Google Scholar 

  19. Zhang, Y., Chen, X., Park, D.: Formal specification of constant product market maker model & implementation (2018). https://github.com/runtimeverification/verified-smart-contracts/blob/uniswap/uniswap/x-y-k.pdf

  20. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time discovery of profit-generating transactions in DeFi protocols. In: IEEE Symposium on Security and Privacy, pp. 919–936. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00113

  21. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading on decentralized on-chain exchanges. In: IEEE Symposium on Security and Privacy, pp. 428–445. IEEE (2021). https://doi.org/10.1109/SP40001.2021.00027

Download references

Acknowledgements

Massimo Bartoletti is partially supported by Conv. Fondazione di Sardegna & Atenei Sardi project F75F21001220007 ASTRID. James Hsin-yu Chiang is supported by the PhD School of DTU Compute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Hsin-yu Chiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartoletti, M., Chiang, J.Hy., Lluch Lafuente, A. (2022). Maximizing Extractable Value from Automated Market Makers. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics