Skip to main content

Permissionless Consensus in the Resource Model

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13411))

Included in the following conference series:

  • 1349 Accesses

Abstract

This paper introduces a new model that abstracts resource-restricted distributed computation and permits simpler reasoning about consensus protocols in the resource-restricted regime. Our model introduces a simple abstraction – simply called “resources” – to capture a resource-restricted primitive which is general enough to capture most Proof of X such as Proof of Work and Proof of Stake. The supply of such resources is scarce, and a single resource allows a party to send a single message with elevated protocol status. For example, every puzzle solution in Proof of Work or Proof of Stake is a resource; the message associated with each resource is the payload of the puzzle. We show the power of resources for the problem of consensus, in which participants attempt to agree on a function of their inputs. We prove that given few additional assumptions, resources are sufficient to achieve consensus in the permissionless regime, even in the presence of a full-information adversary that can choose which parties get resources and when they get them. In the resource model, the participants do not need to know a bound on network delay, they do not need clocks, and they can join and leave the execution arbitrarily, even after sending only a single message. We require only a known upperbound on the rate at which resources enter the system, relative to the maximum network delay (without needing to know the network delay), and that over the long term, a majority of resources are acquired by honest participants. Our protocol for consensus follows from a protocol for graph consensus, which we define as a generalization of blockchains. Our graph consensus works even when resources enter the system at high rates, but the required honest majority increases with the rate. We show how to modify the protocol slightly to achieve one-bit consensus. We also show that for every graph consensus protocol that outputs a majority of honest vertices there exists a one-bit consensus protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is a standard encoding technique. By encompassing the message with its resource, it is clear where the string bound to the resource begins and ends.

References

  1. Alwen, J., Tackmann, B.: Moderately hard functions: definition, instantiations, and applications. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017. LNCS, vol. 10677, pp. 493–526. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_17

    Chapter  Google Scholar 

  2. Back, A., et al.: Hashcash-a denial of service counter-measure (2002)

    Google Scholar 

  3. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V.: Ouroboros genesis: composable proof-of-stake blockchains with dynamic availability. In: ACM Conference on Computer and Communications Security, pp. 913–930. ACM (2018)

    Google Scholar 

  4. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11

    Chapter  Google Scholar 

  5. Bano, S., et al.: Consensus in the age of blockchains. CoRR, abs/1711.03936 (2017)

    Google Scholar 

  6. Bentov, I., Hubácek, P., Moran, T., Nadler, A.: Tortoise and hares consensus: the meshcash framework for incentive-compatible, scalable cryptocurrencies. IACR Cryptology ePrint Archive, 2017:300 (2017)

    Google Scholar 

  7. Bentov, I., Pass, R., Shi, E.: The sleepy model of consensus. IACR Cryptology ePrint Archive, 2016:918 (2016)

    Google Scholar 

  8. Bentov, I., Pass, R., Shi, E.: Snow white: provably secure proofs of stake. IACR Cryptology ePrint Archive, 2016:919 (2016)

    Google Scholar 

  9. David, B., Ga, P., Kiayias, A., Russell, A.: Ouroboros praos: an adaptively-secure, semi-synchronous proof-of-stake protocol. Technical report, Cryptology ePrint Archive, Report 2017/573 (2017). http://eprint.iacr.org/2017/573

  10. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 139–147. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_10

    Chapter  Google Scholar 

  11. Eckey, L., Faust, S., Loss, J.: Efficient algorithms for broadcast and consensus based on proofs of work. IACR Cryptology ePrint Archive, 2017:915 (2017)

    Google Scholar 

  12. Garay, J., Kiayias, A., Ostrovsky, R., Panagiotakos, G., Zikas, V.: Resource-restricted cryptography: revisiting MPC bounds in the proof-of-work era. Cryptology ePrint Archive, Report 2019/1264 (2019). https://eprint.iacr.org/2019/1264

  13. Garay, J.A., Kiayias, A.: SoK: a consensus taxonomy in the blockchain era. IACR Cryptology ePrint Archive, 2018:754 (2018)

    Google Scholar 

  14. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  15. Garay, J.A., Kiayias, A., Panagiotakos, G.: Consensus from signatures of work. Cryptology ePrint Archive, Report 2017/775 (2017). https://eprint.iacr.org/2017/775

  16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., Zeldovich, N.: Algorand: scaling byzantine agreements for cryptocurrencies. Cryptology ePrint Archive, Report 2017/454 (2017). https://eprint.iacr.org/2017/454

  17. Kiffer, L., Rajaraman, R., Shelat, A.: A better method to analyze blockchain consistency. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS 2018, pp. 729–744. Association for Computing Machinery, New York (2018)

    Google Scholar 

  18. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. (TOPLAS) 4(3), 382–401 (1982)

    Article  Google Scholar 

  19. Lewis-Pye, A., Roughgarden, T.: A general framework for the security analysis of blockchain protocols. CoRR, abs/2009.09480 (2020)

    Google Scholar 

  20. Miller, A., Kosba, A., Katz, J., Shi, E.: Nonoutsourceable scratch-off puzzles to discourage bitcoin mining coalitions. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 680–691. ACM (2015)

    Google Scholar 

  21. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  22. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. IACR Cryptology ePrint Archive, 2016:454 (2016)

    Google Scholar 

  23. Pass, R., Shi, E.: Rethinking large-scale consensus. In: 2017 IEEE 30th Computer Security Foundations Symposium (CSF), pp. 115–129. IEEE (2017)

    Google Scholar 

  24. Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of faults. J. ACM (JACM) 27(2), 228–234 (1980)

    Article  MathSciNet  Google Scholar 

  25. Terner, B.: Permissionless consensus in the resource model. Cryptology ePrint Archive, Report 2020/355 (2020). https://ia.cr/2020/355

  26. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decentralized digital currencies. Cryptology ePrint Archive, Report 2015/464 (2015). https://eprint.iacr.org/2015/464

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Terner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Terner, B. (2022). Permissionless Consensus in the Resource Model. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics