Skip to main content

Explainable Arguments

  • Conference paper
  • First Online:
Financial Cryptography and Data Security (FC 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13411))

Included in the following conference series:

  • 986 Accesses

Abstract

We introduce an intriguing new type of argument systems with the additional property of being explainable. Intuitively by explainable, we mean that given any argument under a statement, and any witness, we can produce the random coins for which the \(\textsf{Prove}\) algorithm outputs the same bits of the argument.

This work aims at introducing the foundations for the interactive as well as the non-interactive setting. We show how to build explainable arguments from witness encryption and indistinguishability obfuscation. Finally, we show applications of explainable arguments. Notably we construct deniable chosen-ciphertext secure encryption. Previous deniable encryption scheme achieved only chosen plaintext security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Apon, D., Fan, X., Liu, F.-H.: Deniable attribute based encryption for branching programs from LWE. In: Hirt, M., Smith, A. (eds.) TCC 2016-B, Part II. LNCS, vol. 9986, pp. 299–329. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53644-5_12

    Chapter  Google Scholar 

  2. Babai, L., Moran, S.: Arthur-merlin games: a randomized proof system, and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36(2), 254–276 (1988)

    Article  MathSciNet  Google Scholar 

  3. Barak, B., et al.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_1

    Chapter  Google Scholar 

  4. Barak, B., Ong, S.J., Vadhan, S.: Derandomization in cryptography. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 299–315. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_18

    Chapter  MATH  Google Scholar 

  5. Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0053428

    Chapter  Google Scholar 

  6. Benaloh, J.C., Tuinstra, D.: Receipt-free secret-ballot elections (extended abstract). In: 26th ACM STOC, pp. 544–553. ACM Press, May 1994

    Google Scholar 

  7. Bendlin, R., Nielsen, J.B., Nordholt, P.S., Orlandi, C.: Lower and upper bounds for deniable public-key encryption. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 125–142. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_7

    Chapter  Google Scholar 

  8. Bitansky, N., Choudhuri, A.R.: Characterizing deterministic-prover zero knowledge. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 535–566. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_19

    Chapter  Google Scholar 

  9. Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015, Part II. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_16

    Chapter  MATH  Google Scholar 

  10. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its applications (extended abstract). In: 20th ACM STOC, pp. 103–112. ACM Press, May 1988

    Google Scholar 

  11. Bohli, J.-M., Steinwandt, R.: Deniable group key agreement. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 298–311. Springer, Heidelberg (2006). https://doi.org/10.1007/11958239_20

    Chapter  Google Scholar 

  12. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8

    Chapter  Google Scholar 

  13. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  15. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229

    Chapter  Google Scholar 

  16. Canetti, R., Park, S., Poburinnaya, O.: Fully deniable interactive encryption. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 807–835. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56784-2_27

    Chapter  Google Scholar 

  17. Chaidos, P., Cortier, V., Fuchsbauer, G., Galindo, D.: BeleniosRF: a non-interactive receipt-free electronic voting scheme. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1614–1625. ACM Press, October 2016

    Google Scholar 

  18. Chakraborty, S., Prabhakaran, M., Wichs, D.: Witness maps and applications. In: Kiayias, A., Kohlweiss, M., Wallden, P., Zikas, V. (eds.) PKC 2020, Part I. LNCS, vol. 12110, pp. 220–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45374-9_8

    Chapter  Google Scholar 

  19. Cramer, R., Shoup, V.: Signature schemes based on the strong RSA assumption. In: Motiwalla, J., Tsudik, G. (eds.) ACM CCS 1999, pp. 46–51. ACM Press, November 1999

    Google Scholar 

  20. Dachman-Soled, D.: On the impossibility of sender-deniable public key encryption. Cryptology ePrint Archive, Report 2012/727 (2012). https://eprint.iacr.org/2012/727

  21. Dachman-Soled, D.: A black-box construction of a CCA2 encryption scheme from a plaintext aware (sPA1) encryption scheme. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 37–55. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_3

    Chapter  Google Scholar 

  22. De Caro, A., Iovino, V., O’Neill, A.: Deniable functional encryption. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016, Part II. LNCS, vol. 9614, pp. 196–222. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49384-7_8

    Chapter  Google Scholar 

  23. De Santis, A., Micali, S., Persiano, G.: Non-interactive zero-knowledge proof systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-48184-2_5

    Chapter  Google Scholar 

  24. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM CCS 2005, pp. 112–121. ACM Press, November 2005

    Google Scholar 

  25. Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. J. Cryptol. 22(4), 572–615 (2009)

    Article  MathSciNet  Google Scholar 

  26. Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: Juels, A., Wright, R.N., Capitani di Vimercati, S.D. (eds.) ACM CCS 2006, pp. 400–409. ACM Press, October/November 2006

    Google Scholar 

  27. Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_28

    Chapter  MATH  Google Scholar 

  28. Dodis, Y., Katz, J., Smith, A., Walfish, S.: Composability and on-line deniability of authentication. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 146–162. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_10

    Chapter  MATH  Google Scholar 

  29. Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4_28

    Chapter  Google Scholar 

  30. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991

    Google Scholar 

  31. Dwork, C., Naor, M.: Zaps and their applications. In: 41st FOCS, pp. 283–293. IEEE Computer Society Press, November 2000

    Google Scholar 

  32. Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: 30th ACM STOC, pp. 409–418. ACM Press, May 1998

    Google Scholar 

  33. Faonio, A., Nielsen, J.B., Venturi, D.: Predictable arguments of knowledge. In: Fehr, S. (ed.) PKC 2017, Part I. LNCS, vol. 10174, pp. 121–150. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54365-8_6

    Chapter  Google Scholar 

  34. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  35. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  36. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 467–476. ACM Press, June 2013

    Google Scholar 

  37. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_9

    Chapter  Google Scholar 

  38. Goldreich, O.: Basing non-interactive zero-knowledge on (enhanced) trapdoor permutations: the state of the art. In: Goldreich, O. (ed.) Studies in Complexity and Cryptography. Miscellanea on the Interplay between Randomness and Computation. LNCS, vol. 6650, pp. 406–421. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22670-0_28

    Chapter  Google Scholar 

  39. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: 21st ACM STOC, pp. 25–32. ACM Press, May 1989

    Google Scholar 

  40. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_30

    Chapter  Google Scholar 

  41. Goldwasser, S., Klein, S., Wichs, D.: The edited truth. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 305–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_11

    Chapter  Google Scholar 

  42. Goldwasser, S., Ostrovsky, R.: Invariant signatures and non-interactive zero-knowledge proofs are equivalent. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 228–245. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_16

    Chapter  Google Scholar 

  43. Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for NIZK. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97–111. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_6

    Chapter  Google Scholar 

  44. Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero knowledge for NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339–358. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_21

    Chapter  Google Scholar 

  45. Hanzlik, L., Kluczniak, K.: Explainable arguments. Cryptology ePrint Archive, Report 2021/xxxx (2021, to appear). https://ia.cr/2021/xxxx

  46. Hanzlik, L., Kluczniak, K., Kutyłowski, M., Krzywiecki, Ł: Mutual restricted identification. In: Katsikas, S., Agudo, I. (eds.) EuroPKI 2013. LNCS, vol. 8341, pp. 119–133. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-53997-8_8

    Chapter  Google Scholar 

  47. Hirt, M., Sako, K.: Efficient receipt-free voting based on homomorphic encryption. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 539–556. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_38

    Chapter  Google Scholar 

  48. Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_13

    Chapter  Google Scholar 

  49. Jiang, S., Safavi-Naini, R.: An efficient deniable key exchange protocol (extended abstract). In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 47–52. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85230-8_4

    Chapter  Google Scholar 

  50. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: Sadeghi, A.-R., Gligor, V.D., Yung, M. (eds.) ACM CCS 2013, pp. 669–684. ACM Press, November 2013

    Google Scholar 

  51. Krzywiecki, L., Kluczniak, K., Kozieł, P., Panwar, N.: Privacy-oriented dependency via deniable sigma protocol. Comput. Secur. 79, 53–67 (2018)

    Article  Google Scholar 

  52. Lysyanskaya, A.: Unique signatures and verifiable random functions from the DH-DDH separation. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 597–612. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_38

    Chapter  Google Scholar 

  53. Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS, pp. 120–130. IEEE Computer Society Press, October 1999

    Google Scholar 

  54. Moran, T., Naor, M.: Receipt-free universally-verifiable voting with everlasting privacy. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_22

    Chapter  Google Scholar 

  55. Naor, M.: Deniable ring authentication. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 481–498. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_31

    Chapter  Google Scholar 

  56. Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990

    Google Scholar 

  57. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  58. Park, S., Sealfon, A.: It wasn’t me! Repudiability and claimability of ring signatures. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 159–190. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_6

    Chapter  Google Scholar 

  59. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

    Chapter  Google Scholar 

  60. Peikert, C., Shiehian, S.: Noninteractive zero knowledge for NP from (plain) learning with errors. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part I. LNCS, vol. 11692, pp. 89–114. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26948-7_4

    Chapter  Google Scholar 

  61. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32

    Chapter  Google Scholar 

  62. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: voting with transparent verifiability and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 176–192. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53357-4_12

    Chapter  Google Scholar 

  63. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, May/June (2014)

    Google Scholar 

  64. Sako, K., Kilian, J.: Receipt-free mix-type voting scheme. In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 393–403. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-49264-X_32

    Chapter  Google Scholar 

  65. Unger, N., Goldberg, I.: Improved strongly deniable authenticated key exchanges for secure messaging. Proc. Priv. Enhanc. Technol. 2018(1), 21–66 (2018)

    Google Scholar 

  66. Unger, N., Goldberg, I.: Deniable key exchanges for secure messaging. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1211–1223. ACM Press, October 2015

    Google Scholar 

  67. Vatandas, N., Gennaro, R., Ithurburn, B., Krawczyk, H.: On the cryptographic deniability of the signal protocol. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A. (eds.) ACNS 2020, Part II. LNCS, vol. 12147, pp. 188–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57878-7_10

    Chapter  Google Scholar 

  68. Yamada, S., Attrapadung, N., Santoso, B., Schuldt, J.C.N., Hanaoka, G., Kunihiro, N.: Verifiable predicate encryption and applications to CCA security and anonymous predicate authentication. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 243–261. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_15

    Chapter  Google Scholar 

  69. Yao, A.C.-C., Zhao, Y.: Deniable internet key exchange. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 329–348. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2_20

    Chapter  Google Scholar 

Download references

Acknowledgements

This work has been partially funded/supported by the German Ministry for Education and Research through funding for the project CISPA-Stanford Center for Cybersecurity (Funding numbers: 16KIS0762 and 16KIS0927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucjan Hanzlik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Financial Cryptography Association

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hanzlik, L., Kluczniak, K. (2022). Explainable Arguments. In: Eyal, I., Garay, J. (eds) Financial Cryptography and Data Security. FC 2022. Lecture Notes in Computer Science, vol 13411. Springer, Cham. https://doi.org/10.1007/978-3-031-18283-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18283-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18282-2

  • Online ISBN: 978-3-031-18283-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics