Skip to main content

Optimizing the Prioritization of Compiled Quantum Circuits by Machine Learning Approaches

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1603))

Abstract

The performance of current quantum computers is limited by high error rates and few qubits. Nevertheless, more and more quantum computers are available in the cloud. Selecting a suitable quantum computer to execute a specific quantum circuit and receive precise results can be difficult. At the same time, it is crucial to choose an available quantum computer that offers the hardware characteristics required by the circuit to retrieve precise results, depending on the quantum computer’s last re-calibration and the quantum compiler that maps the circuit to the hardware. Furthermore, cloud providers regulate hardware access, so waiting times must be considered. To support the choice of a quantum computer, we introduced an automated framework in previous work. It enables the user to analyze and prioritize the compiled circuits of a given input circuit for different quantum computers based on their requirements. In this work, we extend the framework by automating the prioritization of compiled circuits targeting short waiting times and precise executions based on previous results. We present our framework’s prototype and case study to demonstrate and evaluate the practical feasibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://youtu.be/luSWN5SRxNg.

  2. 2.

    https://pypi.org/project/pymcdm/.

  3. 3.

    https://docs.scipy.org/doc/scipy/reference/optimize.minimize-cobyla.html.

  4. 4.

    https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/benchmarking.

  5. 5.

    https://qiskit.org/textbook/ch-quantum-hardware/randomized-benchmarking.html.

References

  1. Dodge, Y.: Spearman rank correlation coefficient. In: Dodge, Y. (ed.) The Concise Encyclopedia of Statistics, pp. 502–505. Springer, New York (2008). https://doi.org/10.1007/978-0-387-32833-1_379

    Chapter  Google Scholar 

  2. Aleksandrowicz, G., et al.: Qiskit: An Open-source Framework for Quantum Computing (2019). https://doi.org/10.5281/zenodo.2562111

  3. Alpaydin, E.: Machine Learning: The New AI. MIT Press, Cambridge (2016)

    Google Scholar 

  4. Balugani, E., Lolli, F., Butturi, M.A., Ishizaka, A., Sellitto, M.A.: Logistic regression for criteria weight elicitation in PROMETHEE-based ranking methods. In: Ahram, T., Karwowski, W., Vergnano, A., Leali, F., Taiar, R. (eds.) IHSI 2020. AISC, vol. 1131, pp. 474–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39512-4_74

    Chapter  Google Scholar 

  5. Barzen, J.: From Digital Humanities to Quantum Humanities: Potentials and Applications (2022, to appear). https://doi.org/10.48550/ARXIV.2103.11825

  6. Bączkiewicz, A., Kizielewicz, B., Shekhovtsov, A., Wątróbski, J., Sałabun, W.: Methodical aspects of MCDM based E-commerce recommender system. J. Theor. Appl. Electron. Commer. Res. 16(6), 2192–2229 (2021). https://doi.org/10.3390/jtaer16060122

    Article  Google Scholar 

  7. Bilbao-Terol, A., Arenas-Parra, M., Cañal-Fernández, V., Antomil-Ibias, J.: Using TOPSIS for assessing the sustainability of government bond funds. Omega 49, 1–17 (2014). https://doi.org/10.1016/j.omega.2014.04.005

    Article  Google Scholar 

  8. Bös, J.: Numerical optimization of the thickness distribution of three-dimensional structures with respect to their structural acoustic properties. Struct. Multidiscip. Optim. 32(1), 12–30 (2006). https://doi.org/10.1007/s00158-005-0560-y

    Article  Google Scholar 

  9. Brans, J.-P., Mareschal, B.: Promethee methods. In: Figueira, J., Greco, S., Ehrogott, M. (eds.) Multiple Criteria Decision Analysis: State of the Art Surveys. ISORMS, vol. 78, pp. 163–186. Springer, New York (2005). https://doi.org/10.1007/0-387-23081-5_5

    Chapter  Google Scholar 

  10. Choi, K., Jang, D.H., Kang, S.I., Lee, J.H., Chung, T.K., Kim, H.S.: Hybrid algorithm combing genetic algorithm with evolution strategy for antenna design. IEEE Trans. Magn. 52(3), 1–4 (2016). https://doi.org/10.1109/TMAG.2015.2486043

    Article  Google Scholar 

  11. Cowtan, A., Dilkes, S., Duncan, R., Krajenbrink, A., Simmons, W., Sivarajah, S.: On the qubit routing problem. In: 14th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2019). Leibniz International Proceedings in Informatics (LIPIcs), vol. 135, pp. 5:1–5:32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2019). https://doi.org/10.4230/LIPIcs.TQC.2019.5

  12. Edwards, W.: How to use multiattribute utility measurement for social decisionmaking. IEEE Trans. Syst. Man Cybern. 7(5), 326–340 (1977). https://doi.org/10.1109/TSMC.1977.4309720

    Article  Google Scholar 

  13. Fogel, D.: An introduction to simulated evolutionary optimization. IEEE Trans. Neural Networks 5(1), 3–14 (1994). https://doi.org/10.1109/72.265956

    Article  Google Scholar 

  14. Gao, R., Nam, H.O., Ko, W.I., Jang, H.: National options for a sustainable nuclear energy system: MCDM evaluation using an improved integrated weighting approach. Energies 10(12) (2017). https://doi.org/10.3390/en10122017

  15. Garcia-Alonso, J., Rojo, J., Valencia, D., Moguel, E., Berrocal, J., Murillo, J.M.: Quantum software as a service through a quantum API gateway. IEEE Internet Comput. 26(1), 34–41 (2022). https://doi.org/10.1109/MIC.2021.3132688

    Article  Google Scholar 

  16. Geldermann, J., Lerche, N.: Leitfaden zur Anwendung von Methoden der multikriteriellen Entscheidungsunterstützung. Promethee, Methode (2014)

    Google Scholar 

  17. Grossi, M., et al.: A serverless cloud integration for quantum computing (2021)

    Google Scholar 

  18. Guo, M., Zhang, Q., Liao, X., Chen, F.Y., Zeng, D.D.: A hybrid machine learning framework for analyzing human decision-making through learning preferences. Omega 101, 102263 (2021). https://doi.org/10.1016/j.omega.2020.102263

    Article  Google Scholar 

  19. Hassan, M., Hamada, M.: Genetic algorithm approaches for improving prediction accuracy of multi-criteria recommender systems. Int. J. Comput. Intell. Syst. 11, 146–162 (2018). https://doi.org/10.2991/ijcis.11.1.12

    Article  Google Scholar 

  20. Holland, J.H.: Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (1973). https://doi.org/10.1137/0202009

    Article  MathSciNet  MATH  Google Scholar 

  21. Hwang, C.L., Yoon, K.: Methods for multiple attribute decision making. In: Hwang, C.-L., Yoon, K. (eds.) Multiple Attribute Decision Making, pp. 58–191. Springer, Heidelberg (1981). https://doi.org/10.1007/978-3-642-48318-9_3

    Chapter  Google Scholar 

  22. LaRose, R.: Overview and comparison of gate level quantum software platforms. Quantum 3, 130 (2019). https://doi.org/10.22331/q-2019-03-25-130

  23. Leymann, F., Barzen, J.: The bitter truth about gate-based quantum algorithms in the NISQ era. Quantum Sci. Technol. 5(4), 1–28 (2020). https://doi.org/10.1088/2058-9565/abae7d

    Article  Google Scholar 

  24. Leymann, F., Barzen, J., Falkenthal, M., Vietz, D., Weder, B., Wild, K.: Quantum in the cloud: application potentials and research opportunities. In: Proceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER 2020), pp. 9–24. SciTePress (2020)

    Google Scholar 

  25. Li, P., Qian, H., Wu, J., Chen, J.: Sensitivity analysis of TOPSIS method in water quality assessment: I. Sensitivity to the parameter weights. Environ. Monit. Assess. 185(3), 2453–2461 (2013). https://doi.org/10.1007/s10661-012-2723-9

  26. Luu, C., von Meding, J., Mojtahedi, M.: Analyzing Vietnam’s national disaster loss database for flood risk assessment using multiple linear regression-topsis. Int. J. Disaster Risk Reduct. 40, 101153 (2019). https://doi.org/10.1016/j.ijdrr.2019.101153

    Article  Google Scholar 

  27. Magesan, E., et al.: Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett. 109, 080505 (2012). https://doi.org/10.1103/PhysRevLett.109.080505

    Article  MATH  Google Scholar 

  28. Mojtahedi, S., Oo, B.: Coastal buildings and infrastructure flood risk analysis using multi-attribute decision-making. J. Flood Risk Manag. 9(1), 87–96 (2016). https://doi.org/10.1111/jfr3.12120

    Article  Google Scholar 

  29. Olson, D.: Comparison of weights in topsis models. Math. Comput. Model. 40(7), 721–727 (2004). https://doi.org/10.1016/j.mcm.2004.10.003

    Article  MathSciNet  MATH  Google Scholar 

  30. Orak, S., Arapoğlu, R.A., Sofuoğlu, M.A.: Development of an ANN-based decision-making method for determining optimum parameters in turning operation. Soft. Comput. 22(18), 6157–6170 (2017). https://doi.org/10.1007/s00500-017-2682-8

    Article  Google Scholar 

  31. Pathak, S. (ed.): Intelligent Manufacturing. MFMT, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-50312-3

    Book  Google Scholar 

  32. Pellow-Jarman, A., Sinayskiy, I., Pillay, A., Petruccione, F.: A comparison of various classical optimizers for a variational quantum linear solver. Quantum Inf. Process. 20(6), 1–14 (2021). https://doi.org/10.1007/s11128-021-03140-x

    Article  MathSciNet  Google Scholar 

  33. Powell, M.: A view of algorithms for optimization without derivatives. Math. TODAY 43 (2007)

    Google Scholar 

  34. Powell, M.J.D.: A direct search optimization method that models the objective and constraint functions by linear interpolation. In: Gomez, S., Hennart, J.P. (eds.) Advances in Optimization and Numerical Analysis, pp. 51–67. Springer, Dordrecht (1994). https://doi.org/10.1007/978-94-015-8330-5_4

    Chapter  Google Scholar 

  35. Preskill, J.: Quantum computing in the NISQ era and beyond. Quantum 2, 79 (2018). https://doi.org/10.22331/q-2018-08-06-79

  36. Ravi, G.S., Smith, K.N., Murali, P., Chong, F.T.: Adaptive job and resource management for the growing quantum cloud (2021)

    Google Scholar 

  37. Ros, J.C.: Introduction to Decision Deck-Diviz: Examples User Guide. Departament d’Enginyeria Informàtica i Matemàtiques (2011)

    Google Scholar 

  38. Sałabun, W., Wątróbski, J., Shekhovtsov, A.: Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 12(9) (2020). https://doi.org/10.3390/sym12091549

  39. Salm, M., Barzen, J., Breitenbücher, U., Leymann, F., Weder, B., Wild, K.: The NISQ analyzer: automating the selection of quantum computers for quantum algorithms. In: Dustdar, S. (ed.) SummerSOC 2020. CCIS, vol. 1310, pp. 66–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64846-6_5

    Chapter  Google Scholar 

  40. Salm, M., Barzen, J., Leymann, F., Weder, B.: About a criterion of successfully executing a circuit in the NISQ era: what \(wd \ll 1/\epsilon _\text{eff}\) really means. In: Proceedings of the 1st ACM SIGSOFT International Workshop on Architectures and Paradigms for Engineering Quantum Software (APEQS 2020), pp. 10–13. ACM (2020). https://doi.org/10.1145/3412451.3428498

  41. Salm, M., Barzen, J., Leymann, F., Weder, B.: Prioritization of compiled quantum circuits for different quantum computers. In: Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER 2022), pp. 1258–1265. IEEE (2022). https://doi.org/10.1109/SANER53432.2022.00150

  42. Salm, M., Barzen, J., Leymann, F., Weder, B., Wild, K.: Automating the comparison of quantum compilers for quantum circuits. In: Barzen, J. (ed.) SummerSOC 2021. CCIS, vol. 1429, pp. 64–80. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87568-8_4

    Chapter  Google Scholar 

  43. Sivarajah, S., Dilkes, S., Cowtan, A., Simmons, W., Edgington, A., Duncan, R.: t\(|\)ket\(\rangle \): a retargetable compiler for NISQ devices. Quantum Sci. Technol. 6, 014003 (2020). https://doi.org/10.1088/2058-9565/ab8e92

  44. Spearman, C.: The proof and measurement of association between two things. In: Studies in Individual Differences: The Search for Intelligence, pp. 45–58 (1961). https://doi.org/10.1037/11491-005

  45. Swain, M.J., Ballard, D.H.: Color indexing. Int. J. Comput. Vision 7(1), 11–32 (1991). https://doi.org/10.1007/BF00130487

    Article  Google Scholar 

  46. Tannu, S.S., Qureshi, M.K.: Not all qubits are created equal: a case for variability-aware policies for nisq-era quantum computers. In: Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS 2019, pp. 987–999. ACM (2019). https://doi.org/10.1145/3297858.3304007

  47. University of Stuttgart: NISQ Analyzer Content Repository (2022). https://github.com/UST-QuAntiL/nisq-analyzer-content/tree/paper/optimizing-prioritization/prioritization-based-on-learned-weights

  48. Vietz, D., Barzen, J., Leymann, F., Wild, K.: On decision support for quantum application developers: categorization, comparison, and analysis of existing technologies. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds.) ICCS 2021. LNCS, vol. 12747, pp. 127–141. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77980-1_10

    Chapter  Google Scholar 

  49. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhang, X.T., Shi, G.H.: Integrated evaluation of distributed triple-generation systems using improved grey incidence approach. Energy 33(9), 1427–1437 (2008). https://doi.org/10.1016/j.energy.2008.04.008

    Article  Google Scholar 

  50. Wang, J.J., Jing, Y.Y., Zhang, C.F., Zhao, J.H.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev. 13(9), 2263–2278 (2009). https://doi.org/10.1016/j.rser.2009.06.021

    Article  Google Scholar 

  51. Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019). https://doi.org/10.1016/j.omega.2018.07.004

    Article  Google Scholar 

  52. Wątróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: MCDA Method Selection Tool (2021). http://mcda.it

  53. Weder, B., Barzen, J., Leymann, F., Salm, M., Wild, K.: QProv: a provenance system for quantum computing. IET Quantum Commun. 2(4), 171–181 (2021). https://doi.org/10.1049/qtc2.12012

    Article  Google Scholar 

  54. Wundrack, P.: Quantenunterstütztes Clustering mit hybriden neuronalen Netzen. Master’s thesis (2021). http://dx.doi.org/10.18419/opus-11422

Download references

Acknowledgements

This work was partially funded by the BMWK project PlanQK (01MK20005N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Salm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salm, M., Barzen, J., Leymann, F., Wundrack, P. (2022). Optimizing the Prioritization of Compiled Quantum Circuits by Machine Learning Approaches. In: Barzen, J., Leymann, F., Dustdar, S. (eds) Service-Oriented Computing. SummerSOC 2022. Communications in Computer and Information Science, vol 1603. Springer, Cham. https://doi.org/10.1007/978-3-031-18304-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18304-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18303-4

  • Online ISBN: 978-3-031-18304-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics