Abstract
Semantic parsing aims to convert natural language utterances to logical forms. A critical challenge for constructing semantic parsers is the lack of labeled data. In this paper, we propose a data synthesis and iterative refinement framework for neural semantic parsing, which can build semantic parsers without annotated logical forms. We first generate a naive corpus by sampling logic forms from knowledge bases and synthesizing their canonical utterances. Then, we further propose a bootstrapping algorithm to iteratively refine data and model, via a denoising language model and knowledge-constrained decoding. Experimental results show that our approach achieves competitive performance on Geo, ATIS and Overnight datasets in both unsupervised and semi-supervised data settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, P., Dalmia, A., Jain, P., Bansal, A., Mittal, A.R., Sankaranarayanan, K.: Unified semantic parsing with weak supervision. In: ACL (2019)
Artzi, Y., Zettlemoyer, L.: Weakly supervised learning of semantic parsers for mapping instructions to actions. TACL 1, 49–62 (2013)
Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: ACL (2014)
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: EMNLP (2013)
Bogin, B., Berant, J., Gardner, M.: Representing schema structure with graph neural networks for text-to-SQL parsing. In: ACL (2019)
Cao, R., Zhu, S., Liu, C., Li, J., Yu, K.: Semantic parsing with dual learning. In: ACL (2019)
Cao, R., et al.: Unsupervised dual paraphrasing for two-stage semantic parsing. In: ACL (2020)
Chang, S., Liu, P., Tang, Y., Huang, J., He, X., Zhou, B.: Zero-shot text-to-SQL learning with auxiliary task. In: AAAI (2020)
Chen, B., Sun, L., Han, X.: Sequence-to-action, end-to-end semantic graph generation for semantic parsing. In: ACL (2018)
Dasigi, P., Gardner, M., Murty, S., Zettlemoyer, L., Hovy, E.H.: Iterative search for weakly supervised semantic parsing. In: NAACL-HLT (2019)
Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Dong, L., Lapata, M.: Language to logical form with neural attention. In: ACL (2016)
Dong, L., Lapata, M.: Coarse-to-fine decoding for neural semantic parsing. In: ACL (2018)
Goldman, O., Latcinnik, V., Nave, E., Globerson, A., Berant, J.: Weakly supervised semantic parsing with abstract examples. In: ACL (2018)
Goldwasser, D., Reichart, R., Clarke, J., Roth, D.: Confidence driven unsupervised semantic parsing. In: ACL (2011)
Guo, J., et al.: Towards complex text-to-SQL in cross-domain database with intermediate representation. In: ACL (2019)
Guo, J., et al.: Benchmarking meaning representations in neural semantic parsing. In: EMNLP (2020)
Herzig, J., Berant, J.: Decoupling structure and lexicon for zero-shot semantic parsing. In: EMNLP (2018)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)
Iyyer, M., Yih, W., Chang, M.-W.: Search-based neural structured learning for sequential question answering. In: ACL (2017)
Jia, R., Liang, P.: Data recombination for neural semantic parsing. In: ACL (2016)
Jie, Z., Lu, W.: Dependency-based hybrid trees for semantic parsing. In: EMNLP (2018)
Kate, R.J., Wong, Y.W., Mooney, R.J.: Learning to transform natural to formal languages. In: IAAI (2005)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Krishnamurthy, J., Dasigi, P., Gardner, M.: Neural semantic parsing with type constraints for semi-structured tables. In: EMNLP (2017)
Lample, G., Ott, M., Conneau, A., Denoyer, L., Ranzato, M.: Phrase-based & neural unsupervised machine translation. In: EMNLP (2018)
Liang, C., Berant, J., Le, Q., Forbus, K.D., Lao, N.: Neural symbolic machines: learning semantic parsers on freebase with weak supervision. In: ACL (2017)
Lu, W., Ng, H.T., Lee, W.S., Zettlemoyer, L.S.: A generative model for parsing natural language to meaning representations. In: EMNLP (2008)
Misra, D., Chang, M.-W., He, X., Yih, W.: Policy shaping and generalized update equations for semantic parsing from denotations. In: EMNLP (2018)
Pasupat, P., Liang, P.: Inferring logical forms from denotations. In: ACL (2016)
Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: EMNLP (2014)
Poon, H., Domingos, P.M.: Unsupervised semantic parsing. In: EMNLP (2009)
Poon, H.: Grounded unsupervised semantic parsing. In: ACL (2013)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)
Reddy, S., Lapata, M., Steedman, M.: Large-scale semantic parsing without question-answer pairs. Trans. Assoc. Comput. Linguist. 2, 377–392 (2014)
Shin, R., et al.: Constrained language models yield few-shot semantic parsers. In: Moens, M.-F., Huang, X., Specia, L., Yih, S.W. (eds.) Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual Event/Punta Cana, Dominican Republic, 7–11 November 2021, pp. 7699–7715. Association for Computational Linguistics (2021)
Su, Y., Yan, X.: Cross-domain semantic parsing via paraphrasing. In: EMNLP (2017)
Sun, Y., et al.: Neural semantic parsing in low-resource settings with back-translation and meta-learning. CoRR (2019)
Susanto, R.H., Lu, W.: Semantic parsing with neural hybrid trees. In: AAAI (2017)
Wang, Y., Berant, J., Liang, P.: Building a semantic parser overnight. In: ACL (2015)
Wong, Y.W., Mooney, R.J.: Learning for semantic parsing with statistical machine translation. In: NACL (2006)
Wong, Y.W., Mooney, R.J.: Learning synchronous grammars for semantic parsing with lambda calculus. In: ACL (2007)
Wu, S., et al.: From paraphrasing to semantic parsing: unsupervised semantic parsing via synchronous semantic decoding. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.) Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL/IJCNLP 2021, (Volume 1: Long Papers), Virtual Event, 1–6 August 2021, pp. 5110–5121. Association for Computational Linguistics (2021)
Xiao, C., Dymetman, M., Gardent, C.: Sequence-based structured prediction for semantic parsing. In: ACL (2016)
Xu, K., Wu, L., Wang, Z., Yu, M., Chen, L., Sheinin, V.: Exploiting rich syntactic information for semantic parsing with graph-to-sequence model. In: EMNLP (2018)
Ye, H., Li, W., Wang, L.: Jointly learning semantic parser and natural language generator via dual information maximization. In: ACL (2019)
Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation. In: ACL (2017)
Yin, P., Zhou, C., He, J., Neubig, G.: StructVAE: tree-structured latent variable models for semi-supervised semantic parsing. In: ACL (2018)
Zelle, J.M., Mooney, R.J.: Learning to parse database queries using inductive logic programming. In: AAAI (1996)
Zettlemoyer, L.S., Collins, M.: Learning to map sentences to logical form: structured classification with probabilistic categorial grammars. In: UAI (2005)
Zettlemoyer, L.S., Collins, M.: Online learning of relaxed CCG grammars for parsing to logical form. In: EMNLP-CoNLL (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, S., Chen, B., Han, X., Sun, L. (2022). Data Synthesis and Iterative Refinement for Neural Semantic Parsing without Annotated Logical Forms. In: Sun, M., et al. Chinese Computational Linguistics. CCL 2022. Lecture Notes in Computer Science(), vol 13603. Springer, Cham. https://doi.org/10.1007/978-3-031-18315-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-18315-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18314-0
Online ISBN: 978-3-031-18315-7
eBook Packages: Computer ScienceComputer Science (R0)