Skip to main content

Monitoring Technologies for Animal Welfare: A Review of Aspirations and Deployments in Zoos

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 561))

Included in the following conference series:

Abstract

Focusing on zoo environments, we conducted a literature review investigating the use of non-invasive technologies designed for monitoring the behaviour and welfare of animals. The research question asks: What technologies or monitoring methods have been able to capture information on behaviours and needs of animals in zoo, sanctuary, domestic or agricultural environments? From the initial literature review, we determined progressive zoos, research labs, institutions and companies and identified monitoring technologies developed to improve animal welfare. We then emailed out a concise survey to those zoos to gauge what monitoring technologies they were using and asked them to identify where systems and their deployment could be improved. We highlight advances and developments identified in the literature, to underline current and future monitoring needs of zoo environments. We contribute to the research field by mapping these sought-after changes against the most relevant identified monitoring technologies distinguished in the literature search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wark, J.D., et al.: Monitoring the behavior and habitat use of animals to enhance welfare using the ZooMonitor app. Anim. Behav. Cogn. 6(3), 158–167 (2019)

    Article  Google Scholar 

  2. Hawkes, N.: Animal Care Monitoring Tool Coming to ZIMS (2016). https://www.species360.org/2018/03/animal-care-monitoring/. Accessed 10 Apr 2022

  3. Methley, A.M., Campbell, S., Chew-Graham, C., McNally, R., Cheraghi-Sohi, S.: PICO, PICOS and SPIDER: a comparison study of specificity and sensitivity in three search tools for qualitative systematic reviews. BMC Health Serv. Res. 14(1), 579 (2014)

    Article  Google Scholar 

  4. Watters, J., Margulis, S., Atsalis, S.: Behavioral monitoring in zoos and aquariums: a tool for guiding husbandry and directing research. Zoo Biol. 28(1), 35–48 (2009)

    Article  Google Scholar 

  5. Camal, L., Kirtane, A., Blanco, T., Casas, R., Rossano, F., Aksanli, B.: A wearable device network to track animal behavior and relationships in the wild. In: 2019 IEEE 10th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference, UEMCON 2019, pp. 0198–0202 (2019)

    Google Scholar 

  6. Jukan, A., Masip-Bruin, X., Amla, N.: Smart computing and sensing technologies for animal welfare. ACM Comput. Surv. 50(1), 1–27 (2017)

    Article  Google Scholar 

  7. Kwong, K.H., et al.: Wireless sensor networks in agriculture: cattle monitoring for farming industries. Prog. Electromagn. Res. Symp. 2, 1719–1723 (2009)

    Google Scholar 

  8. Boyd, I., Kato, A., Ropert-Coudert, Y.: Bio-logging science: sensing beyond the boundaries. Mem. Natl. Inst. Polar Res. Spec. Issue 58, 1–14 (2004). Special issue (ISSN/ISBN: 03860744)

    Google Scholar 

  9. Cooke, S.: Biotelemetry and biologging in endangered species research and animal conservation: relevance to regional, national, and IUCN Red List threat assessments. Endanger. Species Res. 4(1–2), 165–185 (2008)

    Article  Google Scholar 

  10. Hedenström, A., Lindström, Å.: Migration and flight strategies in animals: new insights from tracking migratory journeys. In: Animal Movement Across Scales, pp. 73–89. Oxford University Press (2014)

    Google Scholar 

  11. Block, B.A.: Physiological ecology in the 21st century: advancements in biologging science. Integr. Comp. Biol. 45(2), 305–320 (2005)

    Article  Google Scholar 

  12. Tan, S.-L., Ha Duy, N., Garcia-Guzman, J., Garcia-Orduna, F.: A wireless activity monitoring system for monkey behavioural study. In: 2011 IEEE 15th International Symposium on Consumer Electronics (ISCE), pp. 40–45 (2011)

    Google Scholar 

  13. Hindell, M., et al.: Circumpolar habitat use in the southern elephant seal: Implications for foraging success and population trajectories. Ecosphere 7(5), e01213 (2016)

    Article  Google Scholar 

  14. Leoni, J., Tanelli, M., Strada, S.C., Berger-Wolf, T.: Data-driven collaborative intelligent system for automatic activities monitoring of wild animals. In: 2000 IEEE International Conference on Human-Machine Systems (ICHMS), pp. 1–6 (2020)

    Google Scholar 

  15. Kalan, A.K., Mundry, R., Wagner, O.J.J., Heinicke, S., Boesch, C., Kühl, H.S.: Towards the automated detection and occupancy estimation of primates using passive acoustic monitoring. Ecol. Indic. 54, 217–226 (2015)

    Article  Google Scholar 

  16. Pacheco, X.: How technology can transform wildlife conservation. In: Green Technologies to Improve the Environment on Earth. IntechOpen (2018)

    Google Scholar 

  17. Pisto, K.: What do remote cameras reveal for carnivore researchers? Hike with us to find out, 01 August 2019. https://blog.zoo.org/2019/08/what-do-remote-cameras-reveal-for.html. Accessed 22 Feb 2022

  18. Tobler, M., Zúñiga Hartley, A., Carrillo-Percastegui, S., Powell, G.: Spatiotemporal hierarchical modelling of species richness and occupancy using camera trap data. J. Appl. Ecol. 52(2), 413–421 (2015)

    Article  Google Scholar 

  19. Tobler, M.: Camera base version 1.7 [computer program] (2015)

    Google Scholar 

  20. Bowler, M., Tobler, M., Endress, B., Gilmore, M., Anderson, M.: Estimating mammalian species richness and occupancy in tropical forest canopies with arboreal camera traps. Remote Sens. Ecol. Conserv. 3(3), 146–157 (2017)

    Article  Google Scholar 

  21. He, Z., et al.: Visual informatics tools for supporting large-scale collaborative wildlife monitoring with citizen scientists. IEEE Circuits Syst. Mag. 16(1), 73–86 (2016)

    Article  Google Scholar 

  22. McShea, W.J., Forrester, T., Costello, R., He, Z., Kays, R.: Volunteer-run cameras as distributed sensors for macrosystem mammal research. Landsc. Ecol. 31(1), 55–66 (2015). https://doi.org/10.1007/s10980-015-0262-9

    Article  Google Scholar 

  23. McCarthy, M.S., et al.: An assessment of the efficacy of camera traps for studying demographic composition and variation in chimpanzees (Pan troglodytes). Am. J. Primatol. 80(9), e22904 (2018)

    Article  Google Scholar 

  24. Hogg, C., Fox, S., Pemberton, D., Belov, K.: Saving the Tasmanian Devil. CSIRO Publishing, Melbourne (2019)

    Google Scholar 

  25. Rode, J., et al.: Population monitoring of snow leopards using camera trapping in Naryn State Nature Reserve, Kyrgyzstan, between 2016 and 2019. Glob. Ecol. Conserv. 31, e01850 (2021)

    Article  Google Scholar 

  26. Harvey, A.M., Morton, J.M., Ramp, D., Mellor, D.J., Russell, V., Chapple, R.S.: Use of remote camera traps to evaluate animal-based welfare indicators in individual free-roaming wild horses. Animals 11(7), 2101 (2021)

    Article  Google Scholar 

  27. Palencia, P., Vicente, J., Soriguer, R.C., Acevedo, P.: Towards a best-practices guide for camera trapping: assessing differences among camera trap models and settings under field conditions. J. Zool. 316, 197–208 (2021)

    Article  Google Scholar 

  28. Molloy, S.W.: A practical guide to using camera traps for wildlife monitoring in natural resource management projects. Micronesian Megapode Project View Project Bird Ecology and Conservation View Project (2018)

    Google Scholar 

  29. Bugler, K.: Monitoring the ‘original’ panda: impacts and outcomes of using infra-red trail cameras on captive red panda (Ailurus fulgens) behaviour (2020)

    Google Scholar 

  30. Stewart, F.E.C., Fisher, J.T., Burton, A.C., Volpe, J.P.: Species occurrence data reflect the magnitude of animal movements better than the proximity of animal space use. Ecosphere 9(2), e02112 (2018)

    Article  Google Scholar 

  31. Macdonald, D.W., et al.: Multi-scale habitat modelling identifies spatial conservation priorities for mainland clouded leopards (Neofelis nebulosa). Divers. Distrib. 25(10), 1639–1654 (2019)

    Article  Google Scholar 

  32. Archangel Imaging: WAMCam | ESA Business Applications, August 2018. https://business.esa.int/projects/wamcam-1. Accessed 22 Feb 2022

  33. CCTV Camera World: Utilizing Cameras To Monitor Animals (2015). https://www.cctvcameraworld.com/utilizing-cameras-to-monitor-animals.html. Accessed 22 Feb 2022

  34. Young, S.: CCTV for wildlife monitoring : an introduction (2016)

    Google Scholar 

  35. Hansen, B.K., Fultz, A.L., Hopper, L.M., Ross, S.R.: An evaluation of video cameras for collecting observational data on sanctuary-housed chimpanzees (Pan troglodytes). Zoo Biol. 37(3), 156–161 (2018)

    Article  Google Scholar 

  36. Munita, C., Tadich, T.A., Briceño, C.: Comparison of 2 behavioral sampling methods to establish a time budget in a captive female cheetah (Acinonyx jubatus). J. Vet. Behav. 13, 1–5 (2016)

    Article  Google Scholar 

  37. Kalirathinam, U.K., Elangkovan, S., Kawi, J., Cabana, F.: Sleep monitoring of an Asian elephant Elephas maximus calf at Night Safari, Singapore: testing whether sleep time is a significant predictor of cortisol or the onset of positive elephant endotheliotropic herpesvirus viraemia. Int. Zoo Yearb. 53(1), 128–137 (2019)

    Article  Google Scholar 

  38. Chester Zoo and NW Security Group: Smart use of CCTV at Chester Zoo - Case Study. https://www.nwsystemsgroup.com/sectors/visitor-attractions/chester-zoo. Accessed 22 Feb 2022

  39. A. The Birmingham Zoo: High-resolution cameras enhance zoo security while collecting critical information on animal behaviour, July 2017. https://www.mobotix.com/sites/default/files/2019-09/mx_CS_BirminghamZooUSA_en_2018-A4-web%2B.pdf. Accessed 22 Feb 2022

  40. Fazio, J.M., Barthel, T., Freeman, E.W., Garlick-Ott, K., Scholle, A., Brown, J.L.: Utilizing camera traps, closed circuit cameras and behavior observation software to monitor activity budgets, habitat use, and social interactions of zoo-housed Asian Elephants (Elephas maximus). Animals 10(11), 2026 (2020)

    Article  Google Scholar 

  41. Zoo Atlanta: Giant Panda Research: Giant Panda Maternal Behavior. https://zooatlanta.org/project/giant-panda/. Accessed 22 Feb 2022

  42. Brady, A., McMahon, B., Naulty, F.: Estimates of locomotion in Asian elephants Elephas maximus using video monitoring at Dublin Zoo, Ireland. J. Zoo Aquar. Res. 9(2), 124–133 (2021)

    Google Scholar 

  43. Field, A., Miles, J., Field, Z.: Discovering Statistics Using SAS. SAGE Publications Ltd., London (2012)

    Google Scholar 

  44. The Times of India: Delhi zoo installs CCTV cameras to monitor animal behaviour | Delhi News - Times of India (2020). https://timesofindia.indiatimes.com/city/delhi/delhi-zoo-installs-cctv-cameras-to-monitor-animal-behaviour/articleshow/77051744.cms. Accessed 22 Feb 2022

  45. Küster, S., Kardel, M., Ammer, S., Brünger, J., Koch, R., Traulsen, I.: Usage of computer vision analysis for automatic detection of activity changes in sows during final gestation. Comput. Electron. Agric. 169, 105177 (2020)

    Article  Google Scholar 

  46. Rao, Y., Jiang, M., Wang, W., Zhang, W., Wang, R.: On-farm welfare monitoring system for goats based on Internet of Things and machine learning. Int. J. Distrib. Sens. Netw. 16(7), 155014772094403 (2020)

    Article  Google Scholar 

  47. Traulsen, I., Scheel, C., Auer, W., Burfeind, O., Krieter, J.: Using acceleration data to automatically detect the onset of farrowing in sows. Sensors 18(2), 170 (2018)

    Article  Google Scholar 

  48. Connors, M.J., Schauber, E.M., Forbes, A., Jones, C.G., Goodwin, B.J., Ostfeld, R.S.: Use of track plates to quantify predation risk at small spatial scales. J. Mammal. 86(5), 991–996 (2005)

    Article  Google Scholar 

  49. Orban, D.A., Soltis, J., Perkins, L., Mellen, J.D.: Sound at the zoo: using animal monitoring, sound measurement, and noise reduction in zoo animal management. Zoo Biol. 36(3), 231–236 (2017)

    Article  Google Scholar 

  50. Webber, S., Carter, M., Smith, W., Vetere, F.: Interactive technology and human–animal encounters at the zoo. Int. J. Hum. Comput. Stud. 98, 150–168 (2017)

    Article  Google Scholar 

  51. Sensaphone Remote Monitoring Solutions: Case Studies | Remote Monitoring Solutions | Sensaphone (2015). https://www.sensaphone.com/case-studies/2015/03/protecting-animals-from-dangerous-temperatures-24-7. Accessed 22 Feb 2022

  52. Al-Naji, A., Tao, Y., Smith, I., Chahl, J.: A pilot study for estimating the cardiopulmonary signals of diverse exotic animals using a digital camera. Sens. (Switz.) 19(24), 5445 (2019)

    Article  Google Scholar 

  53. Chahl, J.: Using digital cameras for basic health checks saves zoo animals from anesthetics. PhysOrg, 13 February 2020. https://phys.org/news/2020-02-digital-cameras-basic-health-zoo.html. Accessed 22 Feb 2022

  54. Ross, S.R., Lake, B.R., Fultz, A., Hopper, L.M.: An evaluation of thermal imaging as a welfare monitoring tool for captive chimpanzees. Primates 62(6), 919–927 (2021)

    Article  Google Scholar 

  55. Havens, K.J., Sharp, E.J.: Thermal Imaging Techniques to Survey and Monitor Animals in the Wild: A Methodology. Academic Press, London (2015)

    Google Scholar 

  56. Lahoz-Monfort, J.J., Magrath, M.J.L.: A comprehensive overview of technologies for species and habitat monitoring and conservation. Bioscience 71(10), 1038–1062 (2021)

    Article  Google Scholar 

  57. McCafferty, D.J.: Applications of thermal imaging in avian science. Ibis (Lond. 1859) 155(1), 4–15 (2013)

    Article  Google Scholar 

  58. Hristov, N.I., Betke, M., Kunz, T.H.: Applications of thermal infrared imaging for research in aeroecology. Integr. Comp. Biol. 48(1), 50–59 (2008)

    Article  Google Scholar 

  59. Cilulko, J., Janiszewski, P., Bogdaszewski, M., Szczygielska, E.: Infrared thermal imaging in studies of wild animals. Eur. J. Wildl. Res. 59(1), 17–23 (2013)

    Article  Google Scholar 

  60. Steen, K.A., Villa-Henriksen, A., Therkildsen, O.R., Green, O.: Automatic detection of animals in mowing operations using thermal cameras. Sensors 12(6), 7587–7597 (2012)

    Article  Google Scholar 

  61. Desholm, M.: Wind farm related mortality among avian migrants - a remote sensing study and model analysis. Thesis/Dissertation, ETDEWEB. Danmarks Miljoeundersoegelser, Roskilde (Denmark); Copenhagen Univ. (Denmark), Denmark (2006)

    Google Scholar 

  62. Lathlean, J., Seuront, L.: Infrared thermography in marine ecology: methods, previous applications and future challenges. Mar. Ecol. Prog. Ser. 514, 263–277 (2014)

    Article  Google Scholar 

  63. Piel, A.K., et al.: Noninvasive technologies for primate conservation in the 21st century. Int. J. Primatol. 43, 133–167 (2021). https://doi.org/10.1007/s10764-021-00245-z

    Article  Google Scholar 

  64. Mcmahon, B., Teeling, E., Höglund, J.: How and why should we implement genomics into conservation? Evol. Appl. 7(9), 999–1007 (2014)

    Article  Google Scholar 

  65. Hoban, S.M., et al.: Bringing genetic diversity to the forefront of conservation policy and management. Conserv. Genet Resour 5, 593–598 (2013)

    Article  Google Scholar 

  66. Gilardi, K., et al.: Best practice guidelines for health monitoring and disease control in great ape populations (2015). https://doi.org/10.2305/IUCN.CH.2015.SSC-OP.56.en

  67. Jain, M., Olsen, H.E., Paten, B., Akeson, M.: The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17(1), 1–11 (2016)

    Google Scholar 

  68. Loit, K., et al.: Relative performance of MinION (Oxford Nanopore Technologies) versus sequel (Pacific Biosciences) third-generation sequencing instruments in identification of agricultural and forest fungal pathogens. Appl. Environ. Microbiol. 85(21), 1–20, e01368-19 (2019). https://doi.org/10.1128/AEM.01368-19. PMID: 31444199; PMCID: PMC6803294

  69. Baldi, P., La Porta, N.: Molecular approaches for low-cost point-of-care pathogen detection in agriculture and forestry. Front. Plant Sci. 11, 1603 (2020)

    Article  Google Scholar 

  70. Chang, J.J.M., Ip, Y.C.A., Ng, C.S.L., Huang, D.: Takeaways from mobile DNA barcoding with BentoLab and MinION. Genes 11(10), 1121 (2020)

    Article  Google Scholar 

  71. Krehenwinkel, H., Pomerantz, A., Prost, S.: Genetic biomonitoring and biodiversity assessment using portable sequencing technologies: current uses and future directions. Genes 10(11), 858 (2019)

    Article  Google Scholar 

  72. Bonnin, N., Van Andel, A., Kerby, J., Piel, A., Pintea, L., Wich, S.: Assessment of chimpanzee nest detectability in drone-acquired images. Drones 2(2), 17 (2018)

    Article  Google Scholar 

  73. van Hooff, J.A.R.A.M., Lukkenaar, B.: Captive chimpanzee takes down a drone: tool use toward a flying object. Primates 56(4), 289–292 (2015). https://doi.org/10.1007/s10329-015-0482-2

    Article  Google Scholar 

  74. Wich, S.A., Koh, L.P.: Conservation Drones: Mapping and Monitoring Biodiversity, vol. 1. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  75. Koh, L.P., Wich, S.A.: Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5(2), 121–132 (2012)

    Article  Google Scholar 

  76. Minh, T.C.: These new technologies could transform wildlife conservation, 04 February 2022. https://thehill.com/changing-america/sustainability/environment/592820-these-new-technologies-could-transform-wildlife. Accessed 25 Feb 2022

  77. Zhang, H., et al.: Thermal infrared imaging from drones can detect individuals and nocturnal behavior of the world’s rarest primate. Glob. Ecol. Conserv. 23, e01101 (2020)

    Article  Google Scholar 

  78. Duporge, I., et al.: Determination of optimal flight altitude to minimise acoustic drone disturbance to wildlife using species audiograms. Methods Ecol. Evol. 12(11), 2196–2207 (2021)

    Article  Google Scholar 

  79. Crunchant, A.S., Borchers, D., Kühl, H., Piel, A.: Listening and watching: do camera traps or acoustic sensors more efficiently detect wild chimpanzees in an open habitat? Methods Ecol. Evol. 11(4), 542–552 (2020)

    Article  Google Scholar 

  80. Wrege, P.H., Rowland, E.D., Keen, S., Shiu, Y.: Acoustic monitoring for conservation in tropical forests: examples from forest elephants. Methods Ecol. Evol. 8(10), 1292–1301 (2017)

    Article  Google Scholar 

  81. Hyun, C.U., Park, M., Lee, W.Y.: Remotely piloted aircraft system (RPAS)-based wildlife detection: a review and case studies in maritime Antarctica. Animals 10(12), 1–17 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the generous responses from the four zoos who remain anonymised for this article but have read and agreed that their input be published. Additionally, we thank funding from the AUT Summer Research Award from the Faculty of Design and Creative Technology, without which this research would not be possible. We also thank all who reviewed early drafts of this research, including anonymous FTC reviewers, for their helpful comments that have improved this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morrison, A., Novikova, A. (2023). Monitoring Technologies for Animal Welfare: A Review of Aspirations and Deployments in Zoos. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-18344-7_10

Download citation

Publish with us

Policies and ethics