Abstract
In Latin America, there is a culture called Aymara, which has its own language also named Aymara. It is a native language in danger of extension declared by UNESCO and a heritage of the Peruvian nation. The work of Neural Machine Translator since its appearance has been able to translate many languages of the world, however it is not very well researched with native languages, in this work we experience for the first time the automatic translation from Aymara to English with the seq2seq model. First interesting results were obtained that could open up new research projects.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ministerio de la cultura del Peru, Base de datos de pueblos indiginas u originarios (2022)
Albó, X., et al.: Raices de América: el mundo aymara, 1a ed., Alianza Editorial (1988). ISBN 84-206-4213-4
Zhou, M., Secha, J., Cai, R.: Domain adaptation for Tibetan-Chinese neural machine translation. In: 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence (ACAI 2020). Association for Computing Machinery, New York, NY, USA, Article 77, 1–5 (2020). https://doi.org/10.1145/3446132.3446404
Tse, R., Mirri, S., Tang, S.-K., Pau, G., Salomoni, P.: Building an Italian-Chinese parallel corpus for machine translation from the web. In: Proceedings of the 6th EAI International Conference on Smart Objects and Technologies for Social Good (GoodTechs 2020). Association for Computing Machinery, New York, NY, USA, pp. 265–268 (2020). https://doi.org/10.1145/3411170.3411258
Duan, C., et al.: Modeling future cost for neural machine translation. IEEE/ACM Trans. Audio, Speech and Lang. Proc. 29 (2021), 770-781 (2021). https://doi.org/10.1109/TASLP.2020.3042006
Aruskipawinaka, A.: Conversaciones en aimara, Román Pairumani Ajacopa and Alejandra Bertha Carrasco Lima, Centro de Apoyo en Investigación y Educación Multidisciplinaria - CAIEM (2022)
Zanini, N., Dhawan, V.: Text Mining: An introduction to theory and some applications. Research Matters, pp. 38–44 (2015)
Huayhua Pari, F.: Normas para el buen uso de la ortografía aimara. Lengua Y Sociedad, 12(1), 167–176 (2017). Recuperado a partir de http://revista.letras.unmsm.edu.pe/index.php/ls/article/view/428
Webster, J.J., Kit, C.: Tokenization as the initial phase in NLP. In: Proceedings of the 14th Conference on Computational linguistics - Volume 4, COLING ’92. Association for Computational Linguistics, USA, pp. 1106–1110 (1992). https://doi.org/10.3115/992424.992434
Luong, M.-T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation (2015). https://doi.org/10.48550/arxiv.1508.04025
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate (2014). https://doi.org/10.48550/arxiv.1409.0473
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Apaza, H., Aruhuanca, B., Nina, M.M., Flores, A., Silva, C., Tito, E. (2023). Neural Machine Translation for Native Language Aymara to English. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 3. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 561. Springer, Cham. https://doi.org/10.1007/978-3-031-18344-7_40
Download citation
DOI: https://doi.org/10.1007/978-3-031-18344-7_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18343-0
Online ISBN: 978-3-031-18344-7
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)