Skip to main content

Implementation of Lightweight Cryptographic Algorithms in IoT Devices and Sensor Networks

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 560))

Included in the following conference series:

  • 516 Accesses

Abstract

The Internet of Things (IoT) is a paradigm for normal entities capable of sensing and interacting with Internet-connected smart gadgets. The information can be combined from several devices which is applied as statistics to share the databases with this information. The Internet of Things modernizes the chips, cellular network, and sensor network, by connecting everything to the Internet. It has a wide range of uses in our life and industry. One area that requires attention is ensuring the confidentiality, validity of information, and data integrity that arises as a consequence of security and privacy. We have examined in this paper the use of various design principles via the development of KLEIN lightweight block cipher design. This study has indicated that the suggested loop unrolled design technique is useful in terms of energy efficiency. This implementation leads to a more efficient design with a lower energy consumption per bit. The implementation of the unrolled architecture permits the unrolling of additional rounds, up to the entire number of rounds needed by the cipher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things (IoT): a vision, architectural elements, and future directions. Futur. Gener. Comput. Syst. 29(7), 1645–1660 (2013)

    Article  Google Scholar 

  2. Want, R., Dustdar, S.: Activating the internet of things [guest editors’ introduction]. Computer 48(9), 16–20 (2015)

    Article  Google Scholar 

  3. Suo, H., Wan, J., Zou, C., Liu, J.: Security in the internet of things: a review. In: 2012 International Conference on Computer Science and Electronics Engineering, vol. 3, pp. 648–651. IEEE (2012)

    Google Scholar 

  4. Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., Wagner, D.: Smart locks: lessons for securing commodity internet of things devices. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 461–472, 30 May 2016

    Google Scholar 

  5. Airehrour, D., Gutierrez, J., Ray, S.K.: Secure routing for internet of things: a survey. J. Netw. Comput. Appl. 66, 198–213 (2016)

    Article  Google Scholar 

  6. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  7. Da Xu, L.: Enterprise systems: state-of-the-art and future trends. IEEE Trans. Ind. Informatics 7(4), 630–640 (2011)

    Article  Google Scholar 

  8. Li, Y., Hou, M., Liu, H., Liu, Y.: Towards a theoretical framework of strategic decision, supporting capability and information sharing under the context of internet of things. Inf. Technol. Manag. 13(4), 205–216 (2012)

    Article  Google Scholar 

  9. Pang, Z., Chen, Q., Tian, J., Zheng, L., Dubrova, E.: Ecosystem analysis in the design of open platform-based in-home healthcare terminals towards the internet-of-things. In: 15th International Conference on Advanced Communications Technology (ICACT), pp. 529–534. IEEE (2013)

    Google Scholar 

  10. Misra, S., Maheswaran, M., Hashmi, S.: Security Challenges and Approaches in Internet of Things. Springer International Publishing, Cham (2017)

    Book  Google Scholar 

  11. Domingo, M.C.: An overview of the internet of things for people with disabilities. J. Netw. Comput. Appl. 35(2), 584–596 (2012)

    Article  Google Scholar 

  12. Qiuping, W., Shunbing, Z., Chunquan, D.: Study on key technologies of internet of things perceiving mine. Procedia Eng. 26, 2326–2333 (2011)

    Article  Google Scholar 

  13. Zhou, H., Liu, B., Wang, D.: Design and research of urban intelligent transportation system based on the internet of things. In: Wang, Y., Zhang, X. (eds.) IOT 2012. CCIS, vol. 312, pp. 572–580. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32427-7_82

    Chapter  Google Scholar 

  14. Karakostas, B.: A DNS architecture for the internet of things: a case study in transport logistics. Procedia Comput. Sci. 19, 594–601 (2013)

    Article  Google Scholar 

  15. Koziel, B., Azarderakhsh, R., Kermani, M.M.: A high-performance and scalable hardware architecture for isogeny-based cryptography. IEEE Trans. Comput. 67(11), 1594–1609 (2018)

    Article  MathSciNet  Google Scholar 

  16. Meher, P.K., Lou, X.: Low-latency, low-area, and scalable systolic-like modular multipliers for GF (2m) based on irreducible all-one polynomials. IEEE Trans. Circuits Syst. Regul. Pap. 64(2), 399–408 (2016)

    Article  Google Scholar 

  17. Salarifard, R., Bayat-Sarmadi, S., Mosanaei-Boorani, H.: A low-latency and lowcomplexity point-multiplication in ECC. IEEE Trans. Circuits Syst. Regul. Pap. 65(9), 2869–2877 (2018)

    Article  Google Scholar 

  18. Stallings, W.: Cryptography and Network Security: Principles and Practice. International Edition: Principles and Practice, Pearson Higher Ed (2014)

    Google Scholar 

  19. FIPS P. 197: Advanced Encryption Standard (AES), National Institute of Standards and Technology (2001)

    Google Scholar 

  20. McKay, K., Bassham, L., S€onmez Turan, M., Mouha, N.: Report on lightweight cryptography. National Institute of Standards and Technology (2016)

    Google Scholar 

  21. Li, S., Xu, L.D., Zhao, S.: The internet of things: a survey. Inf. Syst. Front. 17(2), 243–259 (2014)

    Article  Google Scholar 

  22. Whitmore, A., Agarwal, A., Da Xu, L.: The internet of things—a survey of topics and trends. Inf. Syst. Front. 17(2), 261–274 (2015)

    Article  Google Scholar 

  23. AlFuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  24. Botta, A., De Donato, W., Persico, V., Pescape, A.: Integration of cloud computing and internet of things: a survey. Futur. Gener. Comput. Syst. 56, 684–700 (2016)

    Article  Google Scholar 

  25. Davis, R.: The data encryption standard in perspective. IEEE Commun. Soc. Mag. 16(6), 5–9 (1978)

    Article  Google Scholar 

  26. Buhrow, B., Riemer, P., Shea, M., Gilbert, B., Daniel, E.: Block cipher speed and energy efficiency records on the MSP430: system design trade-offs for 16-bit embedded applications. In: Aranha, D.F., Menezes, A. (eds.) LATINCRYPT 2014. LNCS, vol. 8895, pp. 104–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16295-9_6

    Chapter  Google Scholar 

  27. Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the limits: a very compact and a threshold implementation of AES. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 69–88. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_6

    Chapter  Google Scholar 

  28. Katagi, M., Moriai, S.: Lightweight Cryptography for the Internet of Things, pp. 7–10. 2008 Sony Corporation (2008)

    Google Scholar 

  29. Ebrahim, M., Khan, S., Khalid, U.B.: Symmetric algorithm survey: a comparative analysis. arXiv preprint arXiv:1405.0398 (2014)

  30. Dinu, D., Le Corre, Y., Khovratovich, D., Perrin, L., Großschädl, J., Biryukov, A.: Triathlon of lightweight block ciphers for the internet of things. J. Cryptographic Eng. 9(3), 283–302 (2018). https://doi.org/10.1007/s13389-018-0193-x

    Article  Google Scholar 

  31. Benadjila, R., Guo, J., Lomne, V., Peyrin, T.: Implementing lightweight block ciphers on x86 architectures. In: International Conference on Selected Areas in Cryptography, pp. 324–351. Springer, Berlin, Heidelberg (2013)

    Google Scholar 

  32. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the internet of things. In: IACR Cryptology ePrint Archive, p. 585 (2015)

    Google Scholar 

  33. Singh, P., Acharya, B., Chaurasiya, R.K.: A comparative survey on lightweight block ciphers for resource constrained applications. Int. J. High Perform. Syst. Archit. 8(4), 250–270 (2019)

    Article  Google Scholar 

  34. Hanley, N., ONeill, M.: Hardware comparison of the ISO/IEC 29192-2 block ciphers. In: 2012 IEEE Computer Society Annual Symposium on VLSI, pp. 57–62. IEEE (2012)

    Google Scholar 

  35. Coppersmith, D., et al.: Symmetric block cipher using multiple stages with modified type-1 and type-3 feistel networks, International Business Machines Corp, assignee. United States Patent 6,189,095 (2001)

    Google Scholar 

  36. Leander, G., Paar, C., Poschmann, A., Schramm, K.: New lightweight DES variants. In: Biryukov, Alex (ed.) FSE 2007. LNCS, vol. 4593, pp. 196–210. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74619-5_13

    Chapter  Google Scholar 

  37. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 1–6, 7 June 2015

    Google Scholar 

  38. Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_20

    Chapter  MATH  Google Scholar 

  39. Robshaw, M., Billet, O.: New Stream Cipher Designs: The eSTREAM Finalists. Springer (2008)

    Google Scholar 

  40. Feldhofer, M., Rechberger, C.: A case against currently used hash functions in RFID protocols. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006. LNCS, vol. 4277, pp. 372–381. Springer, Heidelberg (2006). https://doi.org/10.1007/11915034_61

    Chapter  Google Scholar 

  41. Bogdanov, A., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y.: Hash functions and RFID tags: mind the gap. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 283–299. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_18

    Chapter  MATH  Google Scholar 

  42. Daemen, J., Rijmen, V.: A new MAC construction ALRED and a specific instance ALPHA-MAC. In: International Workshop on Fast Software Encryption, pp. 1–17. Springer, Berlin, Heidelberg (2005)

    Google Scholar 

  43. Dworkin, M.: Recommendation for Block Cipher Modes of Operation. Methods and Techniques. National Inst Standards and Technology, Gaithersburg MD (2001)

    Book  Google Scholar 

  44. Hong, D., Lee, J.-K., Kim, D.-C., Kwon, D., Ryu, K.H., Lee, D.-G.: LEA: a 128-bit block cipher for fast encryption on common processors. In: Kim, Y., Lee, H., Perrig, A. (eds.) WISA 2013. LNCS, vol. 8267, pp. 3–27. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05149-9_1

    Chapter  Google Scholar 

  45. Mohd, B.J., Hayajneh, T., Vasilakos, A.V.: A survey on lightweight block ciphers for lowresource devices: comparative study and open issues. J. Netw. Comput. Appl. 58, 73–93 (2015)

    Article  Google Scholar 

  46. Aragones-Vilella, J., Martinez-Balleste, A., Solanas, A.: A brief survey on RFID privacy and security. In: World Congress on Engineering, pp. 1488–1493 (2007)

    Google Scholar 

  47. Jules, A.: A research survey: RFID security and privacy issue. Comput. Sci. 24, 381–394 (2006)

    Google Scholar 

  48. Gong, Z., Nikova, S., Law, Y.W.: KLEIN: a new family of lightweight block ciphers. In: International Workshop on Radio Frequency Identification: Security and Privacy Issues, Springer, Berlin, Heidelberg, pp. 1–18 (2011)

    Google Scholar 

  49. Juels, A., Weis, S.A.: Authenticating pervasive devices with human protocols. In: Annual International Cryptology Conference, Springer, Berlin, Heidelberg, pp. 293–308 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A. (2023). Implementation of Lightweight Cryptographic Algorithms in IoT Devices and Sensor Networks. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_10

Download citation

Publish with us

Policies and ethics