Skip to main content

State-of-the-Art Lightweight Cryptographic Protocols for IoT Networks

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 560))

Included in the following conference series:

  • 527 Accesses

Abstract

Due to technical improvements, the Internet of Things has enabled the networking of devices capable of collecting vast volumes of data. Consequently, IoT security requirements are crucial. Cryptography safeguards the network's identity, data integrity, privacy, and access control. Since IoT devices impose so many constraints, certain encryption methods are not suited for IoT environment. Therefore, academics have proposed a variety of lightweight cryptographic protocols for protecting data in Internet of Things (IoT) networks. This paper investigates modern lightweight cryptography techniques for IoT networks and evaluates prominent ciphers now in use. Consequently, it divided contemporary into two categories: symmetric lightweight cryptography and asymmetric lightweight encryption. In addition, the security of several newly proposed block cipher and stream cipher methods has been assessed. In addition, the key alterations and potential future study areas have been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Urbanization Prospects: The 2018 Revision, Department of Economic and Social Affairs, The United Nations, United Nations, New York, USA (2018)

    Google Scholar 

  2. Li, Y., Lin, Y., Geertman, S.: The development of smart cities in China. In: 14th International Conference of Computer, Urban Planning and Urban Management, pp. 7–10 (2015)

    Google Scholar 

  3. Lee, J., Kim, J., Seo, J.: Cyber attack scenarios on smart city and their ripple effects. In: International Conference on Platform Technology and Service (PlatCon). IEEE (2019). https://doi.org/10.1109/PlatCon.2019.8669431

  4. Hameed, A., Alomary, A.: Security issues in IoT: a survey. In: 2019 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). IEEE (2019). https://doi.org/10.1109/3ICT.2019.8910320

  5. Cui, L., Xie, G., Qu, Y., Gao, L., Yang, Y.: Security and privacy in smart cities: challenges and opportunities. IEEE Access 6, 46134–46145 (2018). https://doi.org/10.1109/access.2018.2853985. (IEEEAccess)

  6. Gissinga, A., Timmsa, M., Browninga, S., Cromptona, R., McAneney, J.: Compound natural disasters in Australia: a historical analysis. Environ. Hazards (2021). https://doi.org/10.1080/17477891.2021.1932405. (Taylor&Francis)

  7. Demestichas, K., Peppes, N., Alexakis, T.: Survey on security threats in agricultural IoT and smart farming. Sensors (2020). https://doi.org/10.3390/s20226458. (MDPI)

  8. Gupta, M., Abdelsalam, M., Khorsandroo, S., Mittal, S.: Security and privacy in smart farming: Challenges and opportunities. IEEE Access 8, 34564–34584 (2020). https://doi.org/10.1109/ACCESS.2020.2975142. (Artno.9003290)

  9. Jahna, M.M., et al.: Cyber Risk and Security Implications in Smart Agriculture and Food Systems, White Paper, Jahn Research Group, University of Wisconsin–Madison, College of Agriculture and Life Sciences (2019)

    Google Scholar 

  10. Laufs, J., Borrion, E., Bradford, B.: Security and the smart city: a systematic review. Sustain. Cities Soc. 55 (2020). https://doi.org/10.1016/j.scs.2020.102023. (Elsevier Science Direct)

  11. Jiang, X., Lora, M., Chattopadhyay, S.: An experimental analysis of security vulnerabilities in industrial IoT devices. ACM Trans. Internet Technol. (2020). https://doi.org/10.1145/3379542. (ACMDigitalLibrary)

  12. Yang, Y., Wu, L., Yin, G., Li, L., Zhao, H.: A survey on security and privacy issues in internet-of-things. IEEE Internet Things J. 4(5), 1250–1258 (2017). https://doi.org/10.1109/JIOT.2017.2694844. (IEEE)

  13. Noor, M.B.M., Hassan, W.H.: Current research on Internet of Things (IoT) security: a survey. Comput. Netw. 148, 283–294 (2019). https://doi.org/10.1016/j.comnet.2018.11.025. (Elsevier)

  14. Rao, V., Prema, K.V.: Comparative study of lightweight hashing functions for resource constrained devices of IoT. In: 4th International Conference on Computational Systems and Information Technology for Sustainable Solution (CSITSS). IEEE (2019). https://doi.org/10.1109/CSITSS47250.2019.9031038

  15. Roy, S., Rawat, U., Karjee, J.: A lightweight cellular automata based encryption technique for IoT applications. IEEE Access 7, 39782–39793 (2019). https://doi.org/10.1109/ACCESS.2019.2906326. (IEEEAccess)

  16. Yugha, R., Chithra, S.: A survey on technologies and security protocols: Reference for future generation IoT. J. Netw. Comput. Appl. 169 (2020). https://doi.org/10.1016/j.jnca.2020.102763. (Elsevier)

  17. Alabaa, F.A., Othmana, M., Hashema, I.A.T., Alotaibi, F.: Internet of Things security: a survey. J. Netw. Comput. Appl. 88, 10–28 (2017). https://doi.org/10.1016/j.jnca.2017.04.002. (Elsevier)

  18. Ahmed, S.F., Islam, M.R., Nath, T.D., Ferdosi, B.J., Hasan, A.S.M.T.: G-TBSA: a generalized lightweight security algorithm for IoT. In: 2019 4th International Conference on Electrical Information and Communication Technology (EICT). IEEE (2020). https://doi.org/10.1109/EICT48899.2019.9068848

  19. Mamun, Q.: A qualitative comparison of different logical topologies for wireless sensor networks. Sensors (2012). https://doi.org/10.3390/s121114887

  20. Lepekhin, A., Borremans, A., Ilin, I., Jantunen, S.: A systematic mapping study on internet of things challenges. In: IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT). IEEE Digital Library (2019). https://doi.org/10.1109/SERP4IoT.2019.00009

  21. Gunathilake, N.A., Buchanan, W.J., Asif, R.: Next generation lightweight cryptography for smart IoT devices: implementation, challenges and applications. In: IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE (2019). https://doi.org/10.1109/WF-IoT.2019.8767250

  22. Adat, V., Gupta, B.B.: Security in Internet of Things: issues, challenges, taxonomy, and architecture. Telecommun. Syst. 67(3), 423–441 (2017). https://doi.org/10.1007/s11235-017-0345-9

  23. Chew, K.-M., Tan, S.C.-W., Loh, G.C.-W., Bundan, N., Yiiong, S.-P.: IoT soil moisture monitoring and irrigation system development. In: ICSCA 2020: Proceedings of the 2020 9th International Conference on Software and Computer Applications. ACM Digital Library, pp. 247–252 (2020)

    Google Scholar 

  24. Zeadallya, S., Das, A.K., Sklavos, N.: Cryptographic technologies and protocol standards for Internet of Things, Internet Things (2019). https://doi.org/10.1016/j.iot.2019.100075. (Elsevier)

  25. Vaithiyanathan, M.A.P.: A survey on lightweight ciphers for IoT devices. In: Presented at the International Conference on Technological Advancements in Power and Energy (TAP Energy) (2017)

    Google Scholar 

  26. Sfar, A.R., Natalizio, E., Challal, Y., Chtourou, Z.: A roadmap for security challenges in the Internet of Things. Digit. Commun. Netw. 4(2), 118–137 (2018). https://doi.org/10.1016/j.dcan.2017.04.003. (ScienceDirect)

  27. Hamzaab, R., Yancd, Z., Muhammade, K., Bellavistaf, P., Titouna, F.: A privacypreserving cryptosystem for IoT E-healthcare. Inform. Sci. 527, 493–510 (2020). https://doi.org/10.1016/j.ins.2019.01.070. (Elsevier)

  28. Singh, B., Dhanda, S.S., Jindal, P.: Lightweight cryptography: a solution to secure IoT. Wirel. Pers. Commun. 112, 1947–1980 (2020). https://doi.org/10.1007/s11277-020-07134-3. (Springer)

  29. Vujović, V., Maksimović, M.: Raspberry Pi as a Sensor Web node for home automation. Comput. Electr. Eng. 44, 153–171 (2015). https://doi.org/10.1016/j.compeleceng.2015.01.019. (ACM Digital Library)

  30. Kafer, T., Bader, S.R., Heling, L., Manke, R., Harth, A.: Exposing internet of things devices via REST and linked data interfaces. In: 2nd Workshop Semantic Web Technologies for the Internet of Things, Semantic Scholar (2017)

    Google Scholar 

  31. Bansal, S., Kumar, D.: IoT ecosystem: a survey on devices, gateways, operating systems, middleware and communication. Int. J. Wirel. Inf. Netw. (2020). https://doi.org/10.1007/s10776-020-00483-7. (Springer)

  32. Huh, S., Cho, S., Kim, S.: Managing IoT devices using blockchain platform. In: 19th International Conference on Advanced Communication Technology (ICACT). IEEE (2017).https://doi.org/10.23919/ICACT.2017.7890132

  33. Shuman, M.A.R., et al.: Establishing groups of internet of things (IOT) devices and enabling communication among the groups of IOT devices (2017)

    Google Scholar 

  34. Fysarakis, K., Hatzivasilis, G., Rantos, K., Papanikolaou, A., Manifavas, C.: Embedded systems security challenges. In: Measurable Security for Embedded Computing and Communication Systems (MeSeCCS 2014), Research Gate (2014). https://doi.org/10.5220/0004901602550266

  35. Manifavas, C., Hatzivasilis, G., Fysarakis, K., Papaefstathiou, Y.: A survey of lightweight stream ciphers for embedded systems. Secur. Commun. Netw. 9, 1226–1246 (2015). https://doi.org/10.1002/sec.1399. (WileyOnlineLibrary)

  36. Poschmann, A.: Lightweight Cryptography - Cryptographic Engineering for a Pervasive World. Ruhr-University Bochum (2009)

    Google Scholar 

  37. Rolfes, C., Poschmann, A., Leander, G., Paar, C.: Ultra-lightweight implementations for smart devices – security for 1000 gate equivalents. In: International Conference on Smart Card Research and Advanced Applications, pp. 89–103 (2008)

    Google Scholar 

  38. Roman, R., Alcaraz, C., Lopez, J.: A survey of cryptographic primitives and implementations for hardware-constrained sensor network nodes. Mobile Networks Appl. 12(4), 231–244 (2007). https://doi.org/10.1007/s11036-007-0024-2

  39. Kousalya, R., Kumar, G.A.S.: A survey of light-weight cryptographic algorithm for information security and hardware efficiency in resource constrained devices. In: International Conference on Vision Towards Emerging Trends in Communication and Networking (ViTECoN). IEEE (2019). https://doi.org/10.1109/ViTECoN.2019.8899376

  40. Thangamani, N., Murugappan, M.: A lightweight cryptography technique with random pattern generation. Wirel. Pers. Commun. 104, 1409–1432 (2019). https://doi.org/10.1007/s11277-018-6092-8. (Springer)

  41. Zhao, C., Yan, Y., Li, W.: An efficient ASIC implementation of QARMA lightweight algorithm. In: 2019 IEEE 13th International Conference on ASIC (ASICON). IEEE (2020). https://doi.org/10.1109/ASICON47005.2019.8983618

  42. Shantha, M.J.R., Arockiam, L.: SAT_Jo: an enhanced lightweight block cipher for the internet of things. In: 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS). IEEE (2019). https://doi.org/10.1109/ICCONS.2018.8663068

  43. Joshitta, R.S.M., Lawrence, L.A., Malarchelvi, S.K.: Security analysis of SAT_Jo lightweight block cipher for data security in healthcare IoT. In: ICCBDC 2019: Proceedings of the 2019 3rd International Conference on Cloud and Big Data Computing, pp. 111–116 (2019). https://doi.org/10.1145/3358505.3358527

  44. Kubba, Z.M.J., Hoomod, H.K.: A hybrid modified lightweight algorithm combined of two cryptography algorithms PRESENT and salsa20 using chaotic system. In: 2019 International Conference of Computer and Applied Sciences (1st CAS2019). IEEE (2019). https://doi.org/10.1109/CAS47993.2019.9075488

  45. Cho, W.-L., Kim, K.-B., Shin, K.-W.: A hardware design of ultra-lightweight block cipher algorithm PRESENT for IoT applications. J. Korea Inst. Inf. Commun. Eng. 20(7) (2016). https://doi.org/10.6109/jkiice.2016.20.7.1296

  46. Lara, E., Aguilar, L., García, J.A., Sanchez, M.A.: A lightweight cipher based on salsa20 for resource-constrained IoT devices. Sensors (2018). https://doi.org/10.3390/s18103326

  47. Noura, H., Chehab, A., Sleem, L., Noura, M., Couturier, R., Mansour, M.M.: One round cipher algorithm for multimedia IoT devices. Multimedia Tools Appl. (2018). https://doi.org/10.1007/s11042-018-5660-y

  48. Chatterjee, R., Chakraborty, R.: A modified lightweight PRESENT cipher for IoT security. In: 2020 International Conference on Computer Science, Engineering and Applications (ICCSEA). IEEE (2020). https://doi.org/10.1109/ICCSEA49143.2020.9132950

  49. Noura, H., Chehab, A., Couturier, R.: Lightweight dynamic key-dependent and flexible cipher scheme for IoT devices. In: 2019 IEEE Wireless Communications and Networking Conference (WCNC). IEEE (2019). https://doi.org/10.1109/WCNC.2019.8885976

  50. Chaudhary, R.R.K., Chatterjee, K.: An efficient lightweight cryptographic technique for IoT based E-healthcare system. In: 2020 7th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE (2020). https://doi.org/10.1109/SPIN48934.2020.9071421

  51. Khan, M.A., Quasim, M.T., Alghamdi, N.S., Khan, M.Y.: A secure framework for authentication and encryption using improved ECC for IoT-based medical sensor data. IEEE Access 8, 52018–52027 (2020).org/https://doi.org/10.1109/ACCESS.2020.2980739

  52. Mohandas, N.A., Swathi, A.A.R., Nazar, A., Sharath, G.: A4: a lightweight stream cipher. In: 5th International Conference on Communication and Electronics Systems (ICCES). IEEE (2020). https://doi.org/10.1109/ICCES48766.2020.9138048

  53. Thapliyal, S., Gupta, H., Khatri, S.K.: An innovative model for the enhancement of IoT device using lightweight cryptography. In: 2019 Amity International Conference on Artificial Intelligence (AICAI). IEEE (2019). https://doi.org/10.1109/AICAI.2019.8701377

  54. Zhang, X., Xu, Q., Li, X., Wang, C.: A lightweight hash function based on cellular automata for mobile network. In: Presented at the 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN) (2019)

    Google Scholar 

  55. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

  56. Huang, Y., Li, S., Sun, W., Dai, X., Zhu, W.: HVH: a lightweight hash function based on dual pseudo-random transformation. In: Wang, G., Chen, B., Li, W., Di Pietro, R., Yan, X., Han, H. (eds.) SpaCCS. LNCS, vol. 12383, pp. 492–505. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68884-4_41

  57. Rashidi, B.: Efficient full data-path width and serialized hardware structures of SPONGENT lightweight hash function. Microelectron. J. 115 (2021). https://doi.org/10.1016/j.mejo.2021.105167. (Elsevier)

  58. Saldamli, G., Ertaul, L., Shankaralingappa, A.: Analysis of lightweight message authentication codes for IoT environments. In: Presented at the Fourth International Conference on Fog and Mobile Edge Computing (FMEC) (2019)

    Google Scholar 

  59. Dwivedi, A.D.: Security analysis of lightweight IoT cipher: chaskey. Cryptography 4(3), 22 (2020)

    Article  Google Scholar 

  60. Piret, G., Roche, T., Carlet, C.: PICARO – a block cipher allowing efficient higher-order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_19

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alaa Hassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hassan, A. (2023). State-of-the-Art Lightweight Cryptographic Protocols for IoT Networks. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_21

Download citation

Publish with us

Policies and ethics