Abstract
Drowsy drivers cause the most car accidents thus, adopting an efficient drowsiness detection system can alert the driver promptly and precisely which will reduce the numbers of accidents and also save a lot of money. This paper discusses many tactics and methods for drowsy driving warning. The non-intrusive nature of most of the strategies mentioned and contrasted means both vehicular and behavioural techniques are examined here. Thus, the latest strategies are studied and discussed for both groups, together with their benefits and drawbacks. The goal of this review was to identify a practical and low-cost approach for analysing elder drivers’ behaviour.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Overview of 2019 crash incidents, National Highway Traffic Safety Administration (2019). https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813060. Accessed 4 May 2021
Fan, X., Yin, B.C., Sun, Y.F.: Yawning detection based on gabor wavelets and LDA. J. Beijing Univ. Technol. 35(3), 409–413 (2009)
Zhang, Z., Zhang, J.: A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. J. Control Theor. Appl. 8(2), 181–188 (2010). https://doi.org/10.1007/s11768-010-8043-0
Yin, B.C., Fan, X., Sun, Y.F.: Multiscale dynamic features based driver fatigue detection. Int. J. Pattern Recognit. Artif. Intell. 23(3), 575–589 (2009). https://doi.org/10.1142/S021800140900720X
Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Lopez, M.E.: Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 7(1), 63–77 (2006)
D’Orazio, T., Leo, M., Guaragnella, C., Distante, A.: A visual approach for driver inattention detection. Pattern Recogn. 40(8), 2341–2355 (2007)
Liu, D., Sun, P., Xiao, Y., Yin, Y.: Drowsiness detection based on eyelid movement. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 2, pp. 49–52). IEEE (2010)
Dinges, D., Mallis, M., Maislin, G., Powell, J.W.: Evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management (1998)
Abe, T., et al.: Detecting deteriorated vigilance using percentage of eyelid closure time during behavioural maintenance of wakefulness tests. Int. J. Psychophysiol. 82(3), 269–274 (2011)
McKinley, R.A., McIntire, L.K., Schmidt, R., Repperger, D.W., Caldwell, J.A.: Evaluation of eye metrics as a detector of fatigue. Human Fact. 53(4), 403–414 (2011)
Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J.: Drowsy driver detection through facial movement analysis. In: Lew, M., Sebe, N., Huang, T.S., Bakker, E.M. (eds.) Human–Computer Interaction, pp. 6–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75773-3_2
Tipprasert, W., Charoenpong, T., Chianrabutra, C., Sukjamsri, C.: A method of driver’s eyes closure and yawning detection for drowsiness analysis by infrared camera. In: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 61–64. IEEE (2019)
Flores, M., Armingol, J., de la Escalera, A.: Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions. EURASIP J. Adv. Signal Process. 2010, 1–23 (2010)
Xu, J., Min, J., Hu, J.: Real-time eye tracking for the assessment of driver fatigue. Healthc. Technol. Lett. 5(2), 54–58 (2018). https://doi.org/10.1049/htl.2017.0020
Xie, Y., Chen, K., Murphey, Y.L.: Real-time and robust driver yawning detection with deep neural networks. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 532–538 (2018). 10.1109/SSCI.2018.8628881
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90
Abtahi, S., Omidyeganeh, M., Shirmohammadi, S., Hariri, B.:. YawDD: A yawning detection dataset. In: Proceedings of the 5th ACM Multimedia Systems Conference, MMSys 2014, pp. 24–28. Association for Computing Machinery (2014). https://doi.org/10.1145/2557642.2563678
Zhongmin, L., Peng, Y., Hu, W.: Driver fatigue detection based on deeply-learned facial expression representation. J. Visual Commun. Image Representation 71, 102723 (2020). https://doi.org/10.1016/j.jvcir.2019.102723
Savaş, B.K., Becerikli, Y.: Real time driver fatigue detection system based on multi-task ConNN. IEEE Access 8, 12491–12498 (2020). https://doi.org/10.1109/ACCESS.2020.2963960
Baccour, M.H., Driewer, F., Kasneci, E., Rosenstiel, W.: Camera-based eye blink detection algorithm for assessing driver drowsiness. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 987–993 (2019) https://doi.org/10.1109/IVS.2019.8813871
Press, W.H., Teukolsky, S.A.: Savitzky-golay smoothing filters. Comput. Phys. 4, 669–672 (1990). https://doi.org/10.1063/1.4822961
Date, P.V., Gaikwad, V.: Vision based lane detection and departure warning system. In: 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 240–245 (2017). https://doi.org/10.1109/CSPC.2017.8305846
Zhenhai, G., DinhDat, L., Hongyu, H., Ziwen, Y., Xinyu, W.: Driver drowsiness detection based on time series analysis of steering wheel angular velocity. In: 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 99–101 (2017). https://doi.org/10.1109/ICMTMA.2017.0031
Li, Z., Chen, L., Peng, J., Ying, W.: Automatic detection of driver fatigue using driving operation information for transportation safety. Sensors 17(6), 1212 (2017). https://doi.org/10.3390/s17061212
Rahman, A., Sirshar, M., Khan, A.: Real time drowsiness detection using eye blink monitoring. In: 2015 National Software Engineering Conference (NSEC), pp. 1–7 (2015). https://doi.org/10.1109/NSEC.2015.7396336
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)
Trutschel, U., Sirois, B., Sommer, D., Golz, M., Edwards, D.: PERCLOS: An alertness measure of the past. In: PROCEEDINGS of the Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 172–179 (2017). https://doi.org/10.17077/drivingassessment.1394
Fatima, B., Shahid, A.R., Ziauddin, S., Safi, A.A., Ramzan, H.: Driver fatigue detection using viola jones and principal component analysis. Appl. Artif. Intell. 34(6), 456–483 (2020)
Morris, D.M., Pilcher, J.J., Switzer, F.S., III.: Lane heading difference: an innovative model for drowsy driving detection using retrospective analysis around curves. Accid. Anal. Prev. 80, 117–124 (2015). https://doi.org/10.1016/j.aap.2015.04.007
Čolić, A., Marques, O., Furht, B.: Driver Drowsiness Detection: Systems and Solutions, p. 55. Springer International Publishing (2014)
Altaher, A., Salekshahrezaee, Z., Abdollah Zadeh, A., Rafieipour, H., Altaher, A.: Using multi-inception CNN for face emotion recognition. J. Bioen. Res. 3(1), 1–12 (2021)
Salekshahrezaee, Z., Leevy, J.L., Khoshgoftaar, T.M.: A reconstruction error-based framework for label noise detection. J. Big Data 8(1), 1–16 (2021). https://doi.org/10.1186/s40537-021-00447-5
Anwar, S.N.S.S., Abd Aziz, A., Adil, S.H.: Development of real-time eye tracking algorithm. In: 2021 4th International Conference on Computing & Information Sciences (ICCIS), pp. 1–6. IEEE (2021)
“Shape_predictor_81_face_landmarks/webcam_record.py at master · codeniko/Shape_predictor_81_face_landmarks,” GitHub (2018). https://github.com/codeniko/shape_predictor_81_face_landmarks/blob/master/webcam_record.py
Zhang, L., Liu, F.A.N., Tang, J.: Real-time system for driver fatigue detection by RGB-D camera. ACM Trans. Intell. Syst. Technol. (TIST) 6(2), 1–17 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jan, M.T. et al. (2023). Non-intrusive Drowsiness Detection Techniques and Their Application in Detecting Early Dementia in Older Drivers. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_53
Download citation
DOI: https://doi.org/10.1007/978-3-031-18458-1_53
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18457-4
Online ISBN: 978-3-031-18458-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)