Skip to main content

Non-intrusive Drowsiness Detection Techniques and Their Application in Detecting Early Dementia in Older Drivers

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 560))

Included in the following conference series:

Abstract

Drowsy drivers cause the most car accidents thus, adopting an efficient drowsiness detection system can alert the driver promptly and precisely which will reduce the numbers of accidents and also save a lot of money. This paper discusses many tactics and methods for drowsy driving warning. The non-intrusive nature of most of the strategies mentioned and contrasted means both vehicular and behavioural techniques are examined here. Thus, the latest strategies are studied and discussed for both groups, together with their benefits and drawbacks. The goal of this review was to identify a practical and low-cost approach for analysing elder drivers’ behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Overview of 2019 crash incidents, National Highway Traffic Safety Administration (2019). https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813060. Accessed 4 May 2021

  2. Fan, X., Yin, B.C., Sun, Y.F.: Yawning detection based on gabor wavelets and LDA. J. Beijing Univ. Technol. 35(3), 409–413 (2009)

    Google Scholar 

  3. Zhang, Z., Zhang, J.: A new real-time eye tracking based on nonlinear unscented Kalman filter for monitoring driver fatigue. J. Control Theor. Appl. 8(2), 181–188 (2010). https://doi.org/10.1007/s11768-010-8043-0

    Article  MathSciNet  Google Scholar 

  4. Yin, B.C., Fan, X., Sun, Y.F.: Multiscale dynamic features based driver fatigue detection. Int. J. Pattern Recognit. Artif. Intell. 23(3), 575–589 (2009). https://doi.org/10.1142/S021800140900720X

    Article  Google Scholar 

  5. Bergasa, L.M., Nuevo, J., Sotelo, M.A., Barea, R., Lopez, M.E.: Real-time system for monitoring driver vigilance. IEEE Trans. Intell. Transp. Syst. 7(1), 63–77 (2006)

    Article  Google Scholar 

  6. D’Orazio, T., Leo, M., Guaragnella, C., Distante, A.: A visual approach for driver inattention detection. Pattern Recogn. 40(8), 2341–2355 (2007)

    Article  Google Scholar 

  7. Liu, D., Sun, P., Xiao, Y., Yin, Y.: Drowsiness detection based on eyelid movement. In: 2010 Second International Workshop on Education Technology and Computer Science, vol. 2, pp. 49–52). IEEE (2010)

    Google Scholar 

  8. Dinges, D., Mallis, M., Maislin, G., Powell, J.W.: Evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management (1998)

    Google Scholar 

  9. Abe, T., et al.: Detecting deteriorated vigilance using percentage of eyelid closure time during behavioural maintenance of wakefulness tests. Int. J. Psychophysiol. 82(3), 269–274 (2011)

    Article  Google Scholar 

  10. McKinley, R.A., McIntire, L.K., Schmidt, R., Repperger, D.W., Caldwell, J.A.: Evaluation of eye metrics as a detector of fatigue. Human Fact. 53(4), 403–414 (2011)

    Article  Google Scholar 

  11. Vural, E., Cetin, M., Ercil, A., Littlewort, G., Bartlett, M., Movellan, J.: Drowsy driver detection through facial movement analysis. In: Lew, M., Sebe, N., Huang, T.S., Bakker, E.M. (eds.) Human–Computer Interaction, pp. 6–18. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75773-3_2

    Chapter  Google Scholar 

  12. Tipprasert, W., Charoenpong, T., Chianrabutra, C., Sukjamsri, C.: A method of driver’s eyes closure and yawning detection for drowsiness analysis by infrared camera. In: 2019 First International Symposium on Instrumentation, Control, Artificial Intelligence, and Robotics (ICA-SYMP), pp. 61–64. IEEE (2019)

    Google Scholar 

  13. Flores, M., Armingol, J., de la Escalera, A.: Driver drowsiness warning system using visual information for both diurnal and nocturnal illumination conditions. EURASIP J. Adv. Signal Process. 2010, 1–23 (2010)

    Article  Google Scholar 

  14. Xu, J., Min, J., Hu, J.: Real-time eye tracking for the assessment of driver fatigue. Healthc. Technol. Lett. 5(2), 54–58 (2018). https://doi.org/10.1049/htl.2017.0020

    Article  Google Scholar 

  15. Xie, Y., Chen, K., Murphey, Y.L.: Real-time and robust driver yawning detection with deep neural networks. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 532–538 (2018). 10.1109/SSCI.2018.8628881

    Google Scholar 

  16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings. International Conference on Learning Representations, ICLR (2015)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2016-December, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  18. Abtahi, S., Omidyeganeh, M., Shirmohammadi, S., Hariri, B.:. YawDD: A yawning detection dataset. In: Proceedings of the 5th ACM Multimedia Systems Conference, MMSys 2014, pp. 24–28. Association for Computing Machinery (2014). https://doi.org/10.1145/2557642.2563678

  19. Zhongmin, L., Peng, Y., Hu, W.: Driver fatigue detection based on deeply-learned facial expression representation. J. Visual Commun. Image Representation 71, 102723 (2020). https://doi.org/10.1016/j.jvcir.2019.102723

    Article  Google Scholar 

  20. Savaş, B.K., Becerikli, Y.: Real time driver fatigue detection system based on multi-task ConNN. IEEE Access 8, 12491–12498 (2020). https://doi.org/10.1109/ACCESS.2020.2963960

    Article  Google Scholar 

  21. Baccour, M.H., Driewer, F., Kasneci, E., Rosenstiel, W.: Camera-based eye blink detection algorithm for assessing driver drowsiness. In: 2019 IEEE Intelligent Vehicles Symposium (IV), pp. 987–993 (2019) https://doi.org/10.1109/IVS.2019.8813871

  22. Press, W.H., Teukolsky, S.A.: Savitzky-golay smoothing filters. Comput. Phys. 4, 669–672 (1990). https://doi.org/10.1063/1.4822961

    Article  Google Scholar 

  23. Date, P.V., Gaikwad, V.: Vision based lane detection and departure warning system. In: 2017 International Conference on Signal Processing and Communication (ICSPC), pp. 240–245 (2017). https://doi.org/10.1109/CSPC.2017.8305846

  24. Zhenhai, G., DinhDat, L., Hongyu, H., Ziwen, Y., Xinyu, W.: Driver drowsiness detection based on time series analysis of steering wheel angular velocity. In: 2017 9th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA), pp. 99–101 (2017). https://doi.org/10.1109/ICMTMA.2017.0031

  25. Li, Z., Chen, L., Peng, J., Ying, W.: Automatic detection of driver fatigue using driving operation information for transportation safety. Sensors 17(6), 1212 (2017). https://doi.org/10.3390/s17061212

    Article  Google Scholar 

  26. Rahman, A., Sirshar, M., Khan, A.: Real time drowsiness detection using eye blink monitoring. In: 2015 National Software Engineering Conference (NSEC), pp. 1–7 (2015). https://doi.org/10.1109/NSEC.2015.7396336

  27. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57(2), 137–154 (2004)

    Article  Google Scholar 

  28. Trutschel, U., Sirois, B., Sommer, D., Golz, M., Edwards, D.: PERCLOS: An alertness measure of the past. In: PROCEEDINGS of the Sixth International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design, pp. 172–179 (2017). https://doi.org/10.17077/drivingassessment.1394

  29. Fatima, B., Shahid, A.R., Ziauddin, S., Safi, A.A., Ramzan, H.: Driver fatigue detection using viola jones and principal component analysis. Appl. Artif. Intell. 34(6), 456–483 (2020)

    Article  Google Scholar 

  30. Morris, D.M., Pilcher, J.J., Switzer, F.S., III.: Lane heading difference: an innovative model for drowsy driving detection using retrospective analysis around curves. Accid. Anal. Prev. 80, 117–124 (2015). https://doi.org/10.1016/j.aap.2015.04.007

    Article  Google Scholar 

  31. Čolić, A., Marques, O., Furht, B.: Driver Drowsiness Detection: Systems and Solutions, p. 55. Springer International Publishing (2014)

    Google Scholar 

  32. Altaher, A., Salekshahrezaee, Z., Abdollah Zadeh, A., Rafieipour, H., Altaher, A.: Using multi-inception CNN for face emotion recognition. J. Bioen. Res. 3(1), 1–12 (2021)

    Google Scholar 

  33. Salekshahrezaee, Z., Leevy, J.L., Khoshgoftaar, T.M.: A reconstruction error-based framework for label noise detection. J. Big Data 8(1), 1–16 (2021). https://doi.org/10.1186/s40537-021-00447-5

    Article  Google Scholar 

  34. Anwar, S.N.S.S., Abd Aziz, A., Adil, S.H.: Development of real-time eye tracking algorithm. In: 2021 4th International Conference on Computing & Information Sciences (ICCIS), pp. 1–6. IEEE (2021)

    Google Scholar 

  35. “Shape_predictor_81_face_landmarks/webcam_record.py at master · codeniko/Shape_predictor_81_face_landmarks,” GitHub (2018). https://github.com/codeniko/shape_predictor_81_face_landmarks/blob/master/webcam_record.py

  36. Zhang, L., Liu, F.A.N., Tang, J.: Real-time system for driver fatigue detection by RGB-D camera. ACM Trans. Intell. Syst. Technol. (TIST) 6(2), 1–17 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Tanveer Jan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jan, M.T. et al. (2023). Non-intrusive Drowsiness Detection Techniques and Their Application in Detecting Early Dementia in Older Drivers. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 2. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 560. Springer, Cham. https://doi.org/10.1007/978-3-031-18458-1_53

Download citation

Publish with us

Policies and ethics