Skip to main content

Path Planning and Landing for Unmanned Aerial Vehicles Using AI

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 559))

Included in the following conference series:

Abstract

Latest trends, societal needs and technological advances have led to an unparalleled expansion in the use of Unmanned Aerial Vehicles (UAV) for military and civilian applications. Such systems are becoming increasingly popular in many operations, since they reduce costs, facilitate activities and can increase the granularity of surveillance or delivery. Beyond the Visual Line of Sight (BVLOS) capabilities are becoming recently a pivotal aspect for the UAV industry, and raise the demand for extended levels of autonomy in order to increase the efficiency of flight operations. The present study examines two main aspects of BVLOS operations, namely trajectory planning and self-landing, and demonstrates how well-established path planning techniques, such as the A* and Dijkstra algorithms, can be used to ensure the shortest trajectory length from point A to point B for a UAV under multiple obstacles and constraints and the least number of error corrections. Extensive simulation results showcase the effectiveness of the proposed method. It also provides evidence of the use of computer vision algorithms for detecting the landing site and assisting the UAV to safely land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://microsoft.github.io/AirSim/.

  2. 2.

    https://px4.io/.

References

  1. Md Shah Alam and Jared Oluoch: A survey of safe landing zone detection techniques for autonomous unmanned aerial vehicles (UAVS). Expert Syst. Appl. 179, 115091 (2021)

    Article  Google Scholar 

  2. Azar, A.T., et al.: Drone deep reinforcement learning: a review. Electronics 10(9), 999 (2021)

    Article  Google Scholar 

  3. Cabreira, T.M., Brisolara, L.B., Ferreira, P.R.: Survey on coverage path planning with unmanned aerial vehicles. Drones 3(1), 4 (2019)

    Article  Google Scholar 

  4. Cai, Y., Xi, Q., Xing, X., Gui, H., Liu, Q.: Path planning for UAV tracking target based on improved a-star algorithm. In: 2019 1st International Conference on Industrial Artificial Intelligence (IAI), p. 1–6 (2019)

    Google Scholar 

  5. Deng, Y., Chen, Y., Zhang, Y., Mahadevan, S.: Fuzzy dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 12(3), 1231–1237 (2012)

    Article  Google Scholar 

  6. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  7. Feng, Y., Zhang, C., Baek, S., Rawashdeh, S., Mohammadi, A.: Autonomous landing of a UAV on a moving platform using model predictive control. Drones 2(4), 34 (2018)

    Article  Google Scholar 

  8. Galazka, E., Niemirepo, T. T., Vanne, J.: CiThruS2: Open-source photorealistic 3D framework for driving and traffic simulation in real time. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3284–3291. IEEE (2021)

    Google Scholar 

  9. Gautam, A., Sujit, P. B., Saripalli S.: A survey of autonomous landing techniques for UAVs. In: 2014 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 1210–1218. IEEE (2014)

    Google Scholar 

  10. Gupta, G., Dutta, A.: Trajectory generation and step planning of a 12 DoF biped robot on uneven surface. Robotica 36(7), 945–970 (2018)

    Article  Google Scholar 

  11. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybernet. 4(2), 100–107 (1968)

    Article  Google Scholar 

  12. Hodge, V.J., Hawkins, R., Alexander, R.: Deep reinforcement learning for drone navigation using sensor data. Neural Comput. Appl. 33(6), 2015–2033 (2020). https://doi.org/10.1007/s00521-020-05097-x

    Article  Google Scholar 

  13. Kawabata, S., Lee, J. H., Okamoto, S.: Obstacle avoidance navigation using horizontal movement for a drone flying in indoor environment. In: 2019 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Raza Khan, M.T., Saad, M.M., Ru, Y., Seo, J., Kim, D.: Aspects of unmanned aerial vehicles path planning: overview and applications. Int. J. Commun Syst 34(10), e4827 (2021)

    Google Scholar 

  15. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Autonomous Robot Vehicles, pp. 396–404. Springer, New York (1986). https://doi.org/10.1007/978-1-4613-8997-2_29

  16. LaValle, S. M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  17. LaValle, S. M., Kuffner, J. J., Donald, B. R., et al.: Rapidly-exploring random trees: progress and prospects. Algorithmic and Computational Robotics, vol. 5, pp. 293–308 (2001)

    Google Scholar 

  18. Li, F., Zlatanova, S., Koopman, M., Bai, X., Diakité, A.: Universal path planning for an indoor drone. Autom. Constr. 95, 275–283 (2018)

    Article  Google Scholar 

  19. Meng, H., Xin, G.: UAV route planning based on the genetic simulated annealing algorithm. In: 2010 IEEE International Conference on Mechatronics and Automation, pp. 788–793. IEEE (2010)

    Google Scholar 

  20. Mirzaeinia, A., Shahmoradi, J., Roghanchi, P., Hassanalian, M.: Autonomous routing and power management of drones in GPS-denied environments through dijkstra algorithm. In: AIAA Propulsion and Energy 2019 Forum, p. 4462 (2019)

    Google Scholar 

  21. Panda, M., Das, B., Subudhi, B., Pati, B.B.: A comprehensive review of path planning algorithms for autonomous underwater vehicles. Int. J. Autom. Comput. 17(3), 321–352 (2020)

    Article  Google Scholar 

  22. Politi, E., Panagiotopoulos, I., Varlamis, I., Dimitrakopoulos, G.: A survey of UAS technologies to enable beyond visual line of sight (BVLOS) operations. In VEHITS, pp. 505–512 (2021)

    Google Scholar 

  23. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788 (2016)

    Google Scholar 

  24. Roberge, V., Tarbouchi, M., Labonté, G.: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning. IEEE Trans. Industr. Inform. 9(1), 132–141 (2012)

    Article  Google Scholar 

  25. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. National Acad. Sci. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  26. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: high-fidelity visual and physical simulation for autonomous vehicles. In: Hutter, M., Siegwart, R. (eds.) Field and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67361-5_40

    Chapter  Google Scholar 

  27. Shivgan, R., Dong, Z.: Energy-efficient drone coverage path planning using genetic algorithm. In: 2020 IEEE 21st International Conference on High Performance Switching and Routing (HPSR), pp. 1–6. IEEE (2020)

    Google Scholar 

  28. Souissi, O., Benatitallah, R., Duvivier, D., Artiba, A., Belanger, N., Feyzeau, P.: Path planning: a 2013 survey. In: Proceedings of 2013 International Conference on Industrial Engineering and Systems Management (IESM), pp. 1–8. IEEE (2013)

    Google Scholar 

  29. Tan, L.K.L., Lim, B.C., Park, G., Low, K.H., Yeo, V.C.S.: Public acceptance of drone applications in a highly urbanized environment. Technol. Soc. 64, 101462 (2021)

    Article  Google Scholar 

  30. Tang, G., Tang, C., Claramunt, C., Xiong, H., Zhou, P.: Geometric a-star algorithm: an improved a-star algorithm for AGV path planning in a port environment. IEEE Access 9, 59196–59210 (2021)

    Article  Google Scholar 

  31. Tsintotas, K. A., Bampis, L., Taitzoglou, A., Kansizoglou, I., Antonios Gasteratos, A.: Safe UAV landing: a low-complexity pipeline for surface conditions recognition. In: 2021 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–6. IEEE (2021)

    Google Scholar 

  32. Turker, T., Sahingoz, O. K., Yilmaz, G.: 2D path planning for UAVs in radar threatening environment using simulated annealing algorithm. In: 2015 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 56–61. IEEE (2015)

    Google Scholar 

  33. Yang, Q., Yoo, S.-J.: Optimal UAV path planning: sensing data acquisition over IoT sensor networks using multi-objective bio-inspired algorithms. IEEE Access 6, 13671–13684 (2018)

    Article  Google Scholar 

  34. Zhang, Z., Zhao, Z.: A multiple mobile robots path planning algorithm based on a-star and dijkstra algorithm. Int. J. Smart Home 8(3), 75–86 (2014)

    Article  Google Scholar 

  35. Zhang, Z., Tang, C., Li, Y.: Penetration path planning of stealthy UAV based on improved sparse a-star algorithm. In: 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT), pp. 388–392 (2020)

    Google Scholar 

  36. Zhou, X., Yi, Z., Liu, Y., Huang, K., Huang, H.: Survey on path and view planning for UAVs. Virtual Reality Intell. Hardware 2(1), 56–69 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work is a part of ADACORSA project, that has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 876019. The JU receives support from the European Union’s Horizon 2020 research and innovation program and Germany, Netherlands, Austria, Sweden, Portugal, Italy, Finland, Turkey national Authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iraklis Varlamis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Politi, E., Garyfallou, A., Panagiotopoulos, I., Varlamis, I., Dimitrakopoulos, G. (2023). Path Planning and Landing for Unmanned Aerial Vehicles Using AI. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-031-18461-1_23

Download citation

Publish with us

Policies and ethics