Skip to main content

Distending Function-based Data-Driven Type2 Fuzzy Inference System

  • Conference paper
  • First Online:
Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1 (FTC 2022 2022)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 559))

Included in the following conference series:

  • 1005 Accesses

Abstract

Some challenges arise when applying the existing fuzzy type2 modeling techniques. A large number of rules are required to complete cover the whole input space. A large of parameters associated with type2 membership functions have to be determined. The identified fuzzy model is usually difficult to interpret due to the large number of rules. Designing a fuzzy type2 controller using these models is a computationally expensive task. To overcome these limitations, a procedure is proposed here to identify the fuzzy type2 model directly from the data. This model is called the Distending Function-based Fuzzy Inference System (DFIS). The proposed procedure is used to model the altitude controller of a quadcopter. The DFIS model performance is compared with various fuzzy models. The performance of this controller is compared with type1 and type2 fuzzy controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angelov, P.P., Filev, D.P.: An approach to online identification of takagi-sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B (Cybernetics) 34(1), 484–498 (2004)

    Google Scholar 

  2. Bhattacharyya, S., Basu, D., Konar, A., Tibarewala, D.N.: Interval type-2 fuzzy logic based multiclass ANFIS algorithm for real-time EEG based movement control of a robot arm. Robot. Autonom. Syst. 68, 104–115 (2015)

    Google Scholar 

  3. Castillo, O., Melin, P.: A review on interval type-2 fuzzy logic applications in intelligent control. Inf. Sci. 279, 615–631 (2014)

    Article  MathSciNet  Google Scholar 

  4. Dombi, J.: A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8(2), 149–163 (1982)

    Article  MathSciNet  Google Scholar 

  5. József, D., Abrar, H.: Interval type-2 fuzzy control using distending function. In: Fuzzy Systems and Data Mining V: Proceedings of FSDM 2019, pp. 705–714. IOS Press (2019)

    Google Scholar 

  6. Dombi, J., Hussain, A.: A new approach to fuzzy control using the distending function. J. Process Control 86, 16–29 (2020)

    Article  Google Scholar 

  7. Duţu, L.-C., Mauris, G., Bolon, P.: A fast and accurate rule-base generation method for mamdani fuzzy systems. IEEE Trans. Fuzzy Syst. 26(2), 715–733 (2017)

    Article  Google Scholar 

  8. Gaxiola, F., Melin, P., Valdez, F., Castillo, O.: Interval type-2 fuzzy weight adjustment for backpropagation neural networks with application in time series prediction. Inf. Sci. 260, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  9. Hagras, H.: Type-2 flcs: a new generation of fuzzy controllers. IEEE Comput. Intell. Mag. 2(1), 30–43 (2007)

    Article  Google Scholar 

  10. Mathworks Matlab hardware team. Parrot Drone Support from MATLAB. https://www.mathworks.com/hardware-support/parrot-drone-matlab.html. Accessed 11 Mar 2020

  11. Hassani, H., Zarei, J.: Interval type-2 fuzzy logic controller design for the speed control of dc motors. Syst. Sci. Control Eng. 3(1), 266–273 (2015)

    Article  Google Scholar 

  12. Le, T.-L.: Intelligent fuzzy controller design for antilock braking systems. J. Intell. Fuzzy Syst. 36(4), 3303–3315 (2019)

    Article  Google Scholar 

  13. Le, T.L., Quynh, N.V., Long, N.K., Hong, S.K.: Multilayer interval type-2 fuzzy controller design for quadcopter unmanned aerial vehicles using jaya algorithm. IEEE Access 8, 181246–181257 (2020)

    Google Scholar 

  14. Li, C., Zhou, J., Chang, L., Huang, Z., Zhang, Y.: T-s fuzzy model identification based on a novel hyperplane-shaped membership function. IEEE Trans. Fuzzy Syst. 25(5), 1364–1370 (2017)

    Article  Google Scholar 

  15. Liang, Q., Mendel, J.M.: Interval type-2 fuzzy logic systems: theory and design. IEEE Trans. Fuzzy Syst. 8(5), 535–550 (2000)

    Google Scholar 

  16. Mahfouf, M., Abbod, M.F., Linkens, D.A.: A survey of fuzzy logic monitoring and control utilisation in medicine. Artif. Intell. Med. 21(1–3), 27–42 (2001)

    Article  Google Scholar 

  17. Mendel, J.M.: Computing with words: zadeh, turing, popper and occam. IEEE Comput. Intell. Mag. 2(4), 10–17 (2007)

    Google Scholar 

  18. Mendel, J.M.: Uncertain rule-based fuzzy logic systems: introduction and new. Directions. Ed. USA: Prentice Hall, pp. 25–200 (2000)

    Google Scholar 

  19. Niewiadomski, A.: A type-2 fuzzy approach to linguistic summarization of data. IEEE Trans. Fuzzy Syst. 16(1), 198–212 (2008)

    Article  MathSciNet  Google Scholar 

  20. Tai, K., El-Sayed, A.R., Biglarbegian, M., Gonzalez, C.I., Castillo, O., Mahmud, S.: Review of recent type-2 fuzzy controller applications. Algorithms 9(2), 39 (2016)

    Google Scholar 

  21. Tsai, S.-H., Chen, Y.-W.: A novel identification method for takagi-sugeno fuzzy model. Fuzzy Sets Syst. 338, 117–135 (2018)

    Article  MathSciNet  Google Scholar 

  22. Wu, D., Tan, W.W.: Genetic learning and performance evaluation of interval type-2 fuzzy logic controllers. Eng. Appl. Artif. Intell. 19(8), 829–841 (2006)

    Google Scholar 

  23. Yager, R.R., Zadeh, L.A.: An Introduction to Fuzzy Logic Applications in Intelligent Systems, vol. 165. Springer, New York (2012)

    Google Scholar 

  24. Yu, L., Yan-Qing, Z.: Evolutionary fuzzy neural networks for hybrid financial prediction. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 35(2), 244–249 (2005)

    Google Scholar 

  25. Zadeh, L.A.: Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybern. SMC-3(1), 28–44 (1973)

    Google Scholar 

  26. Zheng, J., Wenli, D., Nascu, I., Zhu, Y., Zhong, W.: An interval type-2 fuzzy controller based on data-driven parameters extraction for cement calciner process. IEEE Access 8, 61775–61789 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

The research was supported by the Ministry of Innovation and Technology NRDI Office (Project no. TKP2021-NVA-09) within the framework of the Artificial Intelligence National Laboratory Program (RRF-2.3.1-21-2022-00004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abrar Hussain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dombi, J., Hussain, A. (2023). Distending Function-based Data-Driven Type2 Fuzzy Inference System. In: Arai, K. (eds) Proceedings of the Future Technologies Conference (FTC) 2022, Volume 1. FTC 2022 2022. Lecture Notes in Networks and Systems, vol 559. Springer, Cham. https://doi.org/10.1007/978-3-031-18461-1_47

Download citation

Publish with us

Policies and ethics