Skip to main content

Towards Real-World Federated Learning in Medical Image Analysis Using Kaapana

  • Conference paper
  • First Online:
Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health (DeCaF 2022, FAIR 2022)

Abstract

The Radiological Cooperative Network (RACOON) is dedicated to strengthening Covid-19 research by establishing a standardized digital infrastructure across all university hospitals in Germany. Using a combination of structured reporting together with advanced image analysis methods, it is possible to train new models for a standardized and automated biomarker extraction that can be easily rolled out across the consortium. A major challenge consists in providing generic and robust tools that work well on relevant data from all hospitals, not just on those where the model was originally trained. Potential solutions are federated approaches that incorporate data from all sites for model generation. In this work, we therefore extend the Kaapana framework used in RACOON to enable real-world federated learning in clinical environments. In addition, we create a benchmark of the nnU-Net when applied in multi-site settings by conducting intra- and cross-site experiments on a multi-site prostate segmentation dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://kaapana.readthedocs.io/en/release-0.1.3/.

  2. 2.

    https://liuquande.github.io/SAML/.

  3. 3.

    https://github.com/kaapana/kaapana.

References

  1. Cahan, E.M., et al.: Putting the data before the algorithm in big data addressing personalized healthcare. npj Dig. Med. 2(1), 1–6 (2019). https://doi.org/10.1038/s41746-019-0157-2. www.nature.com/articles/s41746-019-0157-2

  2. Dayan, I., et al.: Federated learning for predicting clinical outcomes in patients with covid-19. Nat. Med. 27(10), 1735–1743 (2021). https://doi.org/10.1038/s41591-021-01506-3

    Article  Google Scholar 

  3. Dong, Y., et al.: Federated semi-supervised learning for covid region segmentation in chest ct using multi-national data from china, italy, japan. Med. Image Anal. 70, 101992–101992 (2021)

    Article  Google Scholar 

  4. Dou, Q., et al.: Federated deep learning for detecting covid-19 lung abnormalities in ct: a privacy-preserving multinational validation study. npj Dig. Med. 4(1), 60 (2021). https://doi.org/10.1038/s41746-021-00431-6

  5. Feki, I., Ammar, S., Kessentini, Y., Muhammad, K.: Federated learning for covid-19 screening from chest x-ray images. Appl. Soft Comput. 106 (2021). https://doi.org/10.1016/j.asoc.2021.107330

  6. Full, P.M., Isensee, F., Jäger, P.F., Maier-Hein, K.: Studying robustness of semantic segmentation under domain shift in cardiac MRI. In: Puyol Anton, E., et al. (eds.) STACOM 2020. LNCS, vol. 12592, pp. 238–249. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68107-4_24

    Chapter  Google Scholar 

  7. Gonzalez, C., Gotkowski, K., Bucher, A., Fischbach, R., Kaltenborn, I., Mukhopadhyay, A.: Detecting when pre-trained nnU-net models fail silently for covid-19 lung lesion segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12907, pp. 304–314. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87234-2_29

    Chapter  Google Scholar 

  8. Gu, R., Zhang, J., Huang, R., Lei, W., Wang, G., Zhang, S.: Domain composition and attention for unseen-domain generalizable medical image segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 241–250. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_23

    Chapter  Google Scholar 

  9. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021). https://doi.org/10.1038/s41592-020-01008-z

    Article  Google Scholar 

  10. Jiang, M., Wang, Z., Dou, Q.: Harmofl: harmonizing local and global drifts in federated learning on heterogeneous medical images. In: AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  11. Kaissis, G., et al.: End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nat. Mach. Intell. 3(6), 473–484 (2021). https://doi.org/10.1038/s42256-021-00337-8

    Article  Google Scholar 

  12. Kaissis, G.A., Makowski, M.R., Rückert, D., Braren, R.F.: Secure, privacy-preserving and federated machine learning in medical imaging. Nat. Mach. Intell. 2(6), 305–311 (2020). https://doi.org/10.1038/s42256-020-0186-1

    Article  Google Scholar 

  13. Li, Q., et al.: A survey on federated learning systems: vision, hype and reality for data privacy and protection. IEEE Trans. Knowl. Data Eng. 1 (2021). https://doi.org/10.1109/TKDE.2021.3124599

  14. Liu, Q., Dou, Q., Heng, P.-A.: Shape-aware meta-learning for generalizing prostate MRI segmentation to unseen domains. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 475–485. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_46

    Chapter  Google Scholar 

  15. Liu, Q., et al.: Ms-net: multi-site network for improving prostate segmentation with heterogeneous MRI data. IEEE Trans. Med. Imaging 39, 2713–2724 (2020)

    Article  Google Scholar 

  16. Liu, Q., et al.: Feddg: federated domain generalization on medical image segmentation via episodic learning in continuous frequency space. In: The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  17. McMahan, H.B., Moore, E., Ramage, D., Arcas, B.A.: Federated learning of deep networks using model averaging. ArXiv abs/1602.05629 (2016)

    Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  19. Peiffer-Smadja, N., et al.: Machine learning for covid-19 needs global collaboration and data-sharing. Nat. Mach. Intell. 2(6), 293–294 (2020). https://doi.org/10.1038/s42256-020-0181-6

    Article  Google Scholar 

  20. Prayitno, et al.: A systematic review of federated learning in the healthcare area: From the perspective of data properties and applications. Appl. Sci. 11(23) (2021). https://doi.org/10.3390/app112311191

  21. Rieke, N., et al.: The future of digital health with federated learning. npj Dig. Med. 3(1), 119 (2020). https://doi.org/10.1038/s41746-020-00323-1

  22. Roth, H.R., et al.: Federated whole prostate segmentation in MRI with personalized neural architectures. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 357–366. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_34

    Chapter  Google Scholar 

  23. Roth, H.R., et al.: Federated learning for breast density classification: a real-world implementation. In: Albarqouni, S., et al. (eds.) DART/DCL -2020. LNCS, vol. 12444, pp. 181–191. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60548-3_18

    Chapter  Google Scholar 

  24. Sarma, K.V., et al.: Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inf. Assoc. 28(6), 1259–1264 (2021). https://doi.org/10.1093/jamia/ocaa341

  25. Scherer, J., et al.: Joint imaging platform for federated clinical data analytics. JCO Clin. Cancer Inf. 4, 1027–1038 (2020). https://doi.org/10.1200/CCI.20.00045

    Article  Google Scholar 

  26. Sheller, M.J.E.A.: Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci. Rep. 10(1), 12598 (2020). https://doi.org/10.1038/s41598-020-69250-1

  27. Ting, D.S.W., Carin, L., Dzau, V., Wong, T.Y.: Digital technology and covid-19. Nat. Med. 26(4), 459–461 (2020). https://doi.org/10.1038/s41591-020-0824-5

    Article  Google Scholar 

  28. Xu, J., et al.: Federated learning for healthcare informatics. J. Healthc. Inf. Res. 5(1), 1–19 (2021). https://doi.org/10.1007/s41666-020-00082-4

    Article  Google Scholar 

  29. Ziller, A., et al.: Medical imaging deep learning with differential privacy. Sci. Rep. 11(1), 13524 (2021). https://doi.org/10.1038/s41598-021-93030-0

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the German Cancer Consortium (DKTK, Strategic Initiative Joint Imaging Platform), the Helmholtz Association within the project Trustworthy Federated Data Analytics (TFDA) (funding number ZT-I-OO1 4) and by the German Federal Ministry of Education and Research (BMBF) as part of the University Medicine Network (Project RACOON, 01KX2021). Furthermore, we thank Niklas Kühl from the Karlsruhe Service Research Institute (KSRI) and our colleagues at the German Cancer Research Center who were involved in making this work possible, especially Constantin Ulrich, Fabian Isensee, Markus Bujotzek, Maximilian Fischer, Michael Baumgartner, Peter Neher, Piermarco Pascale and Philipp Schader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Kades .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 211 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kades, K., Scherer, J., Zenk, M., Kempf, M., Maier-Hein, K. (2022). Towards Real-World Federated Learning in Medical Image Analysis Using Kaapana. In: Albarqouni, S., et al. Distributed, Collaborative, and Federated Learning, and Affordable AI and Healthcare for Resource Diverse Global Health. DeCaF FAIR 2022 2022. Lecture Notes in Computer Science, vol 13573. Springer, Cham. https://doi.org/10.1007/978-3-031-18523-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18523-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18522-9

  • Online ISBN: 978-3-031-18523-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics