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Abstract. Differential privacy (DP) has arisen as the gold standard
in protecting an individual’s privacy in datasets by adding calibrated
noise to each data sample. While the application to categorical data is
straightforward, its usability in the context of images has been limited.
Contrary to categorical data the meaning of an image is inherent in the
spatial correlation of neighboring pixels making the simple application of
noise infeasible. Invertible Neural Networks (INN) have shown excellent
generative performance while still providing the ability to quantify the
exact likelihood. Their principle is based on transforming a complicated
distribution into a simple one e.g. an image into a spherical Gaussian.
We hypothesize that adding noise to the latent space of an INN can en-
able differentially private image modification. Manipulation of the latent
space leads to a modified image while preserving important details. Fur-
ther, by conditioning the INN on meta-data provided with the dataset
we aim at leaving dimensions important for downstream tasks like clas-
sification untouched while altering other parts that potentially contain
identifying information. We term our method content-aware differential
privacy (CADP). We conduct experiments on publicly available bench-
marking datasets as well as dedicated medical ones. In addition, we show
the generalizability of our method to categorical data. The source code
is publicly available at github.com/Cardio-AI/CADP.

Keywords: Differential Privacy · Invertible Neural Networks · Normal-
izing Flows.

1 Introduction

The predictive performances of algorithms especially neural networks are heav-
ily dependent on the amount of data they are trained with. In contrast, privacy
regulations aiming at hiding individual sensitive information hinder the appli-
cation of machine learning tools on heterogeneous multi-center data. Since it is
not our objective to argue about the benefits of these privacy regulations, we
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strive to find methods that allow publishing of sensitive data simultaneously to
maintaining individual’s privacy. While such methods are trivial to implement
for categorical data (e.g. a data base with entries for sex, age, gender, etc.) com-
plex data such as images pose a difficult objective. Contrary to categorical data
images obtain their meaning by the spatial relationship of individual pixels. Per-
turbing pixels by adding random noise would not hinder a human or a machine
observer from re-identifying the image’s content; recognizing people by their face
being the most obvious example. Older techniques rely on blurring or pixelation
of people’s faces, e.g. Google Street View [11].

Training of machine learning models with such samples would tremendously
decrease their predictive performance because a great deal of features are lost in
the process which the model never sees (see Fig. 1). This is of utmost importance
in the medical domain as we must ensure the model learns on valid features for
detecting pathologies.

(a) GT (b) noise (c) blur (d) mosaic (e) CADP ε = 10 (f) CADP ε = 3 (g) CADP ε = 1

Fig. 1. Example of face anonymization with Differential Privacy [17]. Compared to
conventional approaches based on noise (a), blur (b), and mosaic (d) our content-
aware approach (e)-(g) changes the identity of the image. For ε = 10 (e) one can still see
strong similarities between reconstruction and ground truth as e.g. the lock of hair on
the forehead. For small ε the similarity decreases as desired to disable re-identification.
However, if the subsequent task was to classify the eye color, this would still be possible
with the CADP results from (e)-(g), since we can condition the transformation and
therefore leave important aspects unaltered.

…

Fig. 2. Content-aware differential privacy (CADP) pipeline. After training the INN to
convergence we feed each sample x with the corresponding condition c(y) to obtain
our latent representation z. After clipping its L1-norm to the desired sensitivity s,
Laplacian distributed noise Lap(0, s/ε) is added to obtain ε-DP. The perturbed z̃ is fed
in reverse to obtain the differentially private image x̃.
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We hypothesize that the tools of machine learning namely neural networks
based on Normalizing Flows (NF) known as Invertible Neural Networks (INN)
may be used to address the privacy issue when dealing with images and medical
ones in particular [2]. Our contribution is three-fold:

– First, we provide mathematically grounded evidence that INNs provide a
valuable tool to obtain ε-differentially private images that exhibit all features
of natural images (e.g. sharpness or authenticity). ε quantifies the probability
of data leakage, the lower ε the more privacy is guaranteed.

– Second, by conditioning our network on meta-data provided in conjunction
with the dataset (e.g. pathologies) the INN is able to automatically extract
dimensions most likely corresponding to classifying those meta variables.
We assume these features merit attention for downstream tasks and, thus,
should be modified as little as possible self-evident within the bounds of
desired privacy. We term this method Content-Aware DP (CADP).

– Third, we show the generalizability of our method not just to images but
also to categorical data making it a universal tool for obtaining differentially
private data.

We focus on the task of protecting images in particular, or data in general
in any context, detached from their intended usage.

2 Related Work

Differentially Private Invertible Neural Networks. In general each learning based
algorithm can be trained in a privacy preserving fashion by using differentially
private stochastic gradient descent (DP-SGD) [1]. DP-SGD achieves differen-
tially private model training by clipping the per-sample gradient and adding
calibrated Gaussian noise proportional to the desired level of privacy. Therefore,
DP-SGD tweaks the model parameters instead of the input to obtain privacy by
e.g. ensuring no inputs might be reconstructed from the model parameters [23].

One can distinguish between input-, output-, and algorithm-perturbation
to achieve DP. When the output of the algorithm or the algorithm itself is
perturbed as e.g. in DP-SGD the analysis is performed on the non-private data,
where one has to be concerned about the composition property (ε degrades over
multiple analyses of the dataset). Further, since one cannot release the data the
possibilities for analysis are limited. We circumvent above mentioned limitations
by performing input-perturbation and use the robustness of DP against post-
processing (any further processing of differential private data retains privacy
guarantees).

Obviously, INNs can be trained with DP-SGD as well [24]. However, after
training one can only use the INN in a generative manner by sampling the
latent space z ∼ N (0; I) and obtain data samples that have no relation to in
reality occuring data samples and are therefore artificial. Thus, it does not allow
for perturbation of the real data samples intended to be published or used for
model training. Even worse, using artificial data is also not completely secure
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against attacks [4] and may even lead to wrong pathologies in generated images
[5,15].

Differential Privacy for Images. The most prominent application in the litera-
ture about differentially private images deals with faces, as this is the most vivid
example. Older approaches rely on pixeling, blurring, obfuscation, or inpainting
[10], but this has been proven as ineffective against deep learning based recogniz-
ers [18,19]. Another promising path is the generation of fully artificial data with
e.g. Generative Adversarial Networks (GAN) with the known drawbacks men-
tioned above [6,21,24,25]. Ziller et al. claimed to having applied DP to medical
images. [27]. However, their approach also only involves trainng a conventional
CNN on medical images with DP-SGD. We take a different path and alter the
content of the input image in a private manner as we want to preserve as much
information as possible and only alter dimensions that are not identification re-
lated. To the best of our knowledge DP has never been applied directly to the
content of medical images before.

3 Methods

3.1 (Conditional) Invertible Neural Networks

INNs deal with the approximation of a complex, unobservable distribution p(x)
by a simpler tractable prior q(z), usually a spherical multivariate Gaussian. Let
X =

{
x(1), ...,x(n)

}
be n observed i.i.d. samples from p(x). The objective is to

approximate p(x) via a model fθ consisting of a series of K bijective functions
fθ = f1 � ... � fK parameterized fully by θ transforming q(z) = N (0; I) into
p(x) and vice versa (fθ(x) = z←→ f−1θ (z) = x).

Such a model can efficiently be used in a generative manner to sample x ∼ p
by first sampling z ∼ N (0; I) and subsequently transforming the sample as
x = fθ(z).
Since fθ exhibits invertibility, exact likelihood evaluation becomes tractable by
utilizing the change of variables formula [7,8].

log p(x) = log q
(
f−1θ (z)

)
+ log

∣∣∣∣det

(
∂f−1θ (z)

∂x

)∣∣∣∣ (1)

An isotropic Gaussian is usually chosen as prior. Since its covariance matrix is
diagonal, components are independent. With INNs sharp image details can be
obtained, while simultaneously allowing to modify independent components of
the image in latent space [14].

We build on the foundations laid by Ardizzone et al., who incorporated con-
ditions by e.g. concatenation of class labels to the input [3]. This enables the
INN to implicitly learn the meta-data dependent distribution in latent space. In
the reverse pass we provide the label we would like to obtain, e.g. a pathology,
and the INN generates an altered version of the original image that still exhibits
the desired pathology (fθ(x, c) = z←→ f−1θ (z, c) = x).
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3.2 Content-Aware Differential Privacy

Being termed the gold standard in obscuring data sample sensitive information,
DP provides a mathematically grounded, quantifiable measure of leaked infor-
mation while simultaneously being applicable in a simple manner [26]. From a
high-level perspective it guarantees that changing one value in the database (X
and X ′) will have only a small effect on the model prediction [9].

Pr [M(X ) ∈ S] ≤ exp(ε)Pr [M(X ′) ∈ S] , (2)

whereM denotes a randomized mechanism and S all sets of outputs. The closer
the two probabilities are, the less information is leaked (small ε). DP is usually
obtained by perturbing data with calibrated noise proportional to the function’s
f (L1-norm) sensitivity on dataset X , which is the maximum change in the
function’s value by changing one data point. To achieve pure ε-DP the Laplace
mechanism is commonly used.

s = max
X ,X ′

||f(X )− f(X ′)||1 , (3) M(X ) = f(X ) + Lap
(s
ε

)
. (4)

noindent After training an INN to convergence i.e. fθ(X , C) ∼ N (0, I), each
image and label (xi,yi) ∈ X with corresponding condition ci(yi) is forwarded
through the network (see Fig. 2). The resulting latent space fθ(xi, ci(yi)) =
zi is modified in a differentially private manner by sampling from a Laplace
distribution with standard deviation determined by the sensitivity s and the
desired ε. We clip our sensitivity by dividing each zi by its L1-norm (Alg. 1) [1].
Since Z is learned to be an isotropic Gaussian each component is independent
and can, thus, be modified individually. INNs can trivially be expanded to be
trained on categorical data as well, making our method a general technique for
applying DP on data.

Theorem 1 (ε-Content-Aware-DP Mechanism). For an image x ∈ X
there exists a mechanism MCA that maps x to its differentially private counter-
part x̃ ∈ X . We say MCA satisfies ε-DP, if and only if for all x,x′ ∈ X

MCA = f−1θ [fθ(x) + (l1, ..., lk)] = f−1θ [z + (l1, ..., lk)] = f−1θ [z̃] , (5)

where fθ denotes a function that maps x to a latent vector z ∈ Z and by reverse
pass f−1θ maps z to x. z̃ = z + (l1, ..., lk) denotes the ε-DP perturbed version of
z with li i.i.d. random variables drawn from Lap (s/ε).

Proof. Let x ∈ R|X | and x′ ∈ R|X | be such that ||x − x′||1 ≤ 1, and g(x) =
f−1θ (fθ(x)) be some function g : R|X | → R|Z| → R|X |. We only consider func-
tions that are volume preserving meaning their Jacobian determinant is equal
to one (|det (∂fθ(x)/∂z)| = 1).Let px denote the probability density function of
MCA(x, g, ε), and px′ of MCA(x′, g, ε). We assume the distance between points
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is similar in X and Z as shown by [14]. We compare the two at some arbitrary
point t ∈ R|Z|

px(t)

px′(t)
=

k∏
i=1

(
exp

(
− ε
s |g(x)− f−1θ (t)|

)
exp

(
− ε
s |g(x′)− f−1θ (t)|

)) =

k∏
i=1

(
exp

(
− ε
s |f−1θ (fθ(x)− t) |

)
exp

(
− ε
s |f−1θ (fθ(x′)− t) |

))

=

k∏
i=1

(
exp− ε

s
|f−1θ (zx − t)− f−1θ (zx′ − t) |

)
=

k∏
i=1

(
exp− ε

s
|f−1θ (zx − zx′) |

)
≤

k∏
i=1

exp

(
−ε|zx − zx′ |

s

)
= exp

(
ε||zx − zx′ ||1

s

)
≤ exp(ε) ,

(6)
where the first inequality follows from the triangle inequality, and the last follows

from the definition of sensitivity and ||x− x′||1 ≤ 1. px(t)
px′ (t)

≥ exp(−ε) follows by
symmetry.

4 Experiments

We apply our approach for content-aware differential privacy to several publicly
available datasets to showcase its generalizability. In each case we first train the
INN on the training partition and subsequently train a classifier on the differen-
tially private data. Note that our goal is not to reach as high as possible predic-
tive performance but to close the gap between original and differentially private
training. To exemplify the principle of content-aware DP we use the MNIST
dataset, since the effect of transformations in latent space is obvious [16]. Next,
we use two dedicated medical datasets, the first being a collection of retinal
optical coherence tomography (OCT) scans with four classes (choroidal neovas-
cularization (CNV), diabetic macular edema (DME), drusen, and healthy) [12]
and the second being a series of chest x-ray scans with healthy and pneumonic
patients [12], which contain more complicated and indistinct transformations.

Since most works in adding privacy to images deal with the prototype exam-
ple of identifiability of faces, we also apply our approach to the CelebA Faces
dataset (see Fig. 1) [17]. After having investigated our method on image data,
we expand it to categorical data i.e. diabetes dataset from scikit-learn [20].

For each dataset we train a separete INN with convolutional subnetworks,
with depth (number of downsampling operations) dependent on the image res-
olution. We chose d = 2 for MNIST (28 × 28), d = 4 for OCT and chest x-ray
(128 × 128), and d = 6 for CelebA (3 × 128 × 128). As coupling block we use
the volume preserving GIN (general incompressible-flow) [22] for MNIST and
diabetes data, and Glow (generative flow) [14] for the other, more complicated
datasets. After having trained an INN to convergence we train a classifier with
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Fig. 3. Differentially private reconstruction
of MNIST with different ε and s = ε/2.
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Fig. 4. Accuracy of classifier on different
datasets with different ε and s = min(ε/2, 4).
Further, we trained the same model with DP-
SGD [1]. Training/testing is performed on ei-
ther original (o) or CADP altered (p) data.

Algorithm 1 CADP

Require: Samples from training
set X = {(x1,y1), ..., (xN ,yN )}
with corresponding conditions
C = {c1(y1), ..., cN (yN )}, INN
fθ trained to convergence s.t.
fθ(X ) = Z ∼ N (0, I), sensitivity
s, epsilon ε
for (xi,yi) ∈ X and ci(yi) ∈ C
do

Forward pass
zi ← fθ(xi, ci(yi))
Clip norm of zi
zi ← s · zi

||zi||1
Add calibrated noise
z̃i ← zi + Lap

(
s
ε

)
Reverse Pass
x̃i ← f−1

θ (x̃i, ci(yi))
end for

Output:
X̃ = {(x̃1,y1), ..., (x̃N ,yN )}

convolutional blocks and two linear layers on the differentially private data.
Testing is performed on original data to investigate the amount of true features
the model learns. We believe that the performance of the classifier acts as an
implicit benchmark to make sure the INN not only reconstructs conditional noise.
It is common practice for all works dealing with DP algorithms to be compared
to the non-private benchmark. The goal must be to close the still existing gap
to incentivize differentially private training by eliminating all its shortcomings.
For comparison we also train the same classifier with DP-SGD, the current gold
standard [1]. All experiments were performed on a NVIDIA Titan RTX.

5 Results

The results are presented in a two-fold manner. We first show the differentially
private adjusted images per class for each dataset with different levels of ε.
Second, we show the reached accuracy of the classifier on the original, not-
CADP altered test data chunk when trained on the original, on the CADP
altered dataset, or with DP-SGD.

MNIST. Even for small ε our approach generates visually appealing results
that are indistinguishable from real digits but exhibit a large difference from the
original (see Fig. 3). Attributes being altered are line thickness (e.g. 6), slant (e.g.
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1), and even style (e.g. 2). For ε = 0.2 a classifier trained on CADP-altered data
outperforms the commonly accepted DP-SGD, CADP reaches 92.94% accuracy
while DP-SGD only results in 89.24% (c.f. Fig. 4). The gap closes for larger ε.

Retinal OCT and Chest X-ray. In retinal OCTs the perturbations are rather sub-
tle and difficult to interpret for a human observer or a non-expert. Identification
related attributes like retinal detachments in specific places are (re-)moved im-
peding de-identification (see Fig. 5). The CADP-altered images images exhibit
transformations resulting in large dissimilarites to their original counterpart.
However, CADP induces a smaller privacy-utility tradeoff since the performance
of the classifier trained on CADP altered data is close to the one trained on
original data (Fig. 4). The classifier trained on data altered by our method out-
performs the one trained with DP-SGD by 23.63% on average across all ε on the
OCT test dataset and by 16.52% on the chest X-ray test dataset. We attribute
this to the content-awareness of our method, which leaves dimensions corre-
sponding to conditions, i.e. pathologies, unaltered. This is desirable in settings,
where one trains a model on private data of another location, e.g. a hospital,
and applies it to its own in-house samples.

Categorical Data. INNs can also generate differentially private categorical data
as can be seen in Fig. 6 for the diabetes dataset from scikit-learn [20]. The
data distributions are kept similar but are still altered equipping each data sam-
ple with plausible deniability. To obtain the binary feature of sex, we condition
the INN on this feature; the others are learned in an unsupervised fashion.

6 Discussion and Conclusion

We introduced a new method to achieve differentially private images based on
invertible neural networks, which we term CADP (content-aware differential pri-
vacy). We applied the method to medical images and ensured the identity i.e.
pathology of the patient is not changed by conditioning the INN on the class
labels. We could show that in three experiments on diverse medical data (im-
ages of digits, OCT, and X-ray scans), the subsequent classifiers outperformed
conventional approaches by a margin when fed with CADP-generated data. By
this we reduce the risk for false diagnosis and increase the safety of patients
against wrong diagnoses while providing provable and mathematically grounded
privacy guarantees. Hence, CADP pre-processed datasets may be used to in-
crease anonymity of medical image data in the future. However, the level of
required anonymity should be decided depending on the individual use case.

Even for small ε < 1.0 our method generates visually appealing results that
can be used to train a classifier outperforming DP-SGD with the same privacy
guarantees. However, clipping of the latent space discards information for recon-
struction. In future work, it can be investigated how much information is lost
to assure privacy. Further, an in-depth exploration of the latent space can be
conducted.
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Fig. 5. Content-aware differentially private images from OCT dataset with different ε
for classes CNV and DME [12]. The sensitivity is set to min (ε/2, 4). For high ε (e.g.
10) the reconstructed retinal OCT still share similarities as in Fig. 1. For smaller ε
qualitatively the images look different from their original counterpart. However, the
classifier (Fig. 4) still performs well acting as an implicit control of the preserved
features.
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neural networks for guided image generation (2020), https://openreview.net/

forum?id=SyxC9TEtPH

4. Bellovin, S., Dutta, P., Reitlinger, N.: Privacy and synthetic datasets. In: Stanford
Technology Law Review (2018)

5. Bhadra, S., Kelkar, V.A., Brooks, F.J., Anastasio, M.A.: On hallucinations in tomo-
graphic image reconstruction. In: IEEE transactions on medical imaging. vol. 40,
pp. 3249 – 3260 (2021)

6. Bissoto, A., Perez, F., Valle, E., Avila, S.: Skin lesion synthesis with generative
adversarial networks. In: OR 2.0 Context-Aware Operating Theaters, Computer
Assisted Robotic Endoscopy, Clinical Image-Based Procedures, and Skin Image
Analysis. pp. 294–302 (2018)

7. Dinh, L., Krueger, D., Bengio, Y.: Nice: Non-linear independent components esti-
mation. In: International Conference on Learning Representations (2015)

8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real nvp. In: In-
ternational Conference on Learning Representations (2017), https://openreview.
net/forum?id=HkpbnH9lx

9. Dwork, C., Roth, A.: Medical imaging deep learning with differential privacy. In:
Sci Rep. vol. 11 (2021). https://doi.org/10.1038/s41598-021-93030-0

10. Fan, L.: Image pixelization with differential privacy. In: DBSec (2018)

11. Frome, A., Cheung, G., Abdulkader, A., Zennaro, M., Wu, B., Bissacco, A.,
Adam, H., Neven, H., Vincent, L.: Large-scale privacy protection in google street
view. In: International Conference on Computer Vision. pp. 2373–2380 (2009).
https://doi.org/10.1109/ICCV.2009.5459413

12. Kermany, D., Zhang, K., Goldbaum, M.: Large Dataset of Labeled Opti-
cal Coherence Tomography (OCT) and Chest X-Ray Images. In: Cell (2018).
https://doi.org/10.17632/rscbjbr9sj.3

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference of Learning Representations (2015)

14. Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. In: Advances in Neural Information Processing Systems. vol. 31 (2018)

15. Laves, M.H., Tölle, M., Ortmaier, T.: Uncertainty estimation in medical image
denoising with bayesian deep image prior. In: Uncertainty for Safe Utilization of
Machine Learning in Medical Imaging, and Graphs in Biomedical Image Analysis.
pp. 81–96 (2020)

16. LeCun, Y., Cortes, C., Burges, C.: Mnist handwritten digit database. In: ATT
Labs [Online]. Available: http://yann.lecun.com/exdb/mnist. vol. 2 (2010)

17. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
International Conference on Computer Vision (ICCV) (December 2015)

18. McPherson, R., Shokri, R., Shmatikov, V.: Defeating image obfuscation with deep
learning (2016)

19. Oh, S.J., Benenson, R., Fritz, M., Schiele, B.: Faceless person recognition: Privacy
impli-cations in social media. In: European Conference on Computer Vision. pp.
19–35 (2016)

20. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. In: Journal of Machine Learning Research. vol. 12, pp. 2825–
2830 (2011)

https://openreview.net/forum?id=SyxC9TEtPH
https://openreview.net/forum?id=SyxC9TEtPH
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://doi.org/10.1038/s41598-021-93030-0
https://doi.org/10.1109/ICCV.2009.5459413
https://doi.org/10.17632/rscbjbr9sj.3


Content-Aware Differential Privacy 11
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A Network Architectures

Table 1. Architectures of INN and classifier for different datasets. As optimizer Adam
was used in all cases [13]

Attribute MNIST OCT Chest X-ray CelebA Diabetes

Coupling block GIN Glow Glow Glow GIN

Depth 2× 4 4× 4 4× 4 4× 6 -

N blocks FC 2 4 4 12 4

Input noise 0.15 0.15 0.15 0.15 0.02

Learning Rate 5e-4 3e-4 3e-4 3e-4 1e-4

Batch Size 512 64 64 16 442

Classifier depth 2 5 5 - -

C. Learning Rate 5e-4 5e-4 5e-4 - -

C. Batch Size 512 64 64 - -

B Additional Results
1 2 3 4 5 6 7 8

A B C D E F G H

Fig. 7. Can you guess who is who after applying CADP to faces [17]? Solution:

1-H,2-D,3-F,4-A,5-E,6-B,7-G,8-C

Fig. 8. Additional results with content-aware differentially private images (bottom
row) for random samples from OCT dataset (top row) with ε = 1 and sensitivity
s = 0.5 for all classes. An re-assignment of which ground truth image belongs to which
reconstruction is difficult for a human observer.
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∞ 10.0 6.0 3.0 2.0 1.0 0.5 0.2
ε

Healthy

Pneumonia

Fig. 9. Content-aware differentially private images from Chest X-ray dataset with dif-
ferent ε for classes Pneumonia and Healthy [12]. The sensitivity is set to min (ε/2, 4).
In the case of chest x-ray images the reconstructions degrade with smaller ε, which
might be a consequence of the more complicated patterns.

Fig. 10. Additional results with content-aware differentially private images (bottom
row) for random samples from chest x-ray dataset (top row) with ε = 1 and sensitivity
s = 0.5. Similar to Fig. 9 the images could be of higher quality for a human observer,
but identification is impeded and classification results are on an acceptable level (Fig.
4)
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Fig. 11. Additional features with content-aware differentially private data from dia-
betes dataset from sklearn with ε = 1 and sensitivity s = 1 [20].
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