Abstract
Paths \(P^1,\ldots ,P^k\) in a graph \(G=(V,E)\) are mutually induced if any two distinct \(P^i\) and \(P^j\) have neither common vertices nor adjacent vertices. For a fixed integer k, the k-Induced Disjoint Paths problem is to decide if a graph G with k pairs of specified vertices \((s_i,t_i)\) contains k mutually induced paths \(P^i\) such that each \(P^i\) starts from \(s_i\) and ends at \(t_i\). Whereas the non-induced version is well-known to be polynomial-time solvable for every fixed integer k, a classical result from the literature states that even 2-Induced Disjoint Paths is NP-complete. We prove new complexity results for k-Induced Disjoint Paths if the input is restricted to H-free graphs, that is, graphs without a fixed graph H as an induced subgraph. We compare our results with a complexity dichotomy for Induced Disjoint Paths, the variant where k is part of the input.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Alekseev, V.E.: Polynomial algorithm for finding the largest independent sets in graphs without forks. Discrete Appl. Math. 135, 3–16 (2004)
Belmonte, R., Golovach, P.A., Heggernes, P., van’t Hof, P., Kaminski, M., Paulusma, D.: Detecting fixed patterns in chordal graphs in polynomial time. Algorithmica 69, 501–521 (2014). https://doi.org/10.1007/s00453-013-9748-5
Bienstock, D.: On the complexity of testing for odd holes and induced odd paths. Discrete Math. 90, 85–92 (1991)
Fellows, M.R.: The Robertson-Seymour theorems: a survey of applications. In: Proceedings of AMS-IMS-SIAM Joint Summer Research Conference (1989). Contemp. Math. 89, 1–18
Fiala, J., Kamiński, M., Lidický, B., Paulusma, D.: The \(k\)-in-a-path problem for claw-free graphs. Algorithmica 62, 499–519 (2012). https://doi.org/10.1007/s00453-010-9468-z
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in claw-free graphs. SIAM J. Discrete Math. 29, 348–375 (2015)
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in circular-arc graphs in linear time. Theor. Comput. Sci. 640, 70–83 (2016)
Golovach, P.A., Paulusma, D., van Leeuwen, E.J.: Induced disjoint paths in AT-free graphs. J. Comput. Syst. Sci. 124, 170–191 (2022)
Jaffke, L., Kwon, O., Telle, J.A.: Mim-width I. induced path problems. Discrete Appl. Math. 278, 153–168 (2020)
Kawarabayashi, K., Kobayashi, Y.: A linear time algorithm for the induced disjoint paths problem in planar graphs. J. Comput. Syst. Sci. 78, 670–680 (2012)
Kern, W., Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Disjoint paths and connected subgraphs for \(H\)-free graphs. Theor. Comput. Sci. 898, 59–68 (2022)
Kobayashi, Y., Kawarabayashi, K.: Algorithms for finding an induced cycle in planar graphs and bounded genus graphs. In: Proceedings of the SODA 2009, pp. 1146–1155 (2009)
Lévêque, B., Lin, D.Y., Maffray, F., Trotignon, N.: Detecting induced subgraphs. Discrete Appl. Math. 157, 3540–3551 (2009)
Lynch, J.: The equivalence of theorem proving and the interconnection problem. SIGDA Newslett. 5, 31–36 (1975)
Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J.: Induced disjoint paths and connected subgraphs for \({H}\)-free graphs. In: Bekos, M.A., Kaufmann, M. (eds.) WG 2022. LNCS, vol. 13453, pp. 398–411. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15914-5_29
Radovanović, M., Trotignon, N., Vus̆ković, K.: The (theta, wheel)-free graphs Part IV: induced paths and cycles. J. Comb. Theory Ser. B 146, 495–531 (2021)
Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J. Comb. Theory Ser. B 63, 65–110 (1995)
Shibi, N.: Algorithme de recherche d’un stable de cardinalité maximum dans un graphe sans étoile. Discrete Math. 29, 53–76 (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Martin, B., Paulusma, D., Smith, S., van Leeuwen, E.J. (2022). Few Induced Disjoint Paths for H-Free Graphs. In: Ljubić, I., Barahona, F., Dey, S.S., Mahjoub, A.R. (eds) Combinatorial Optimization. ISCO 2022. Lecture Notes in Computer Science, vol 13526. Springer, Cham. https://doi.org/10.1007/978-3-031-18530-4_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-18530-4_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-18529-8
Online ISBN: 978-3-031-18530-4
eBook Packages: Computer ScienceComputer Science (R0)