Skip to main content

Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic Imaging

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2022)

Abstract

Magnetic Resonance Spectroscopic Imaging (MRSI) is an essential tool for quantifying metabolites in the body, but the low spatial resolution limits its clinical applications. Deep learning-based super-resolution methods provided promising results for improving the spatial resolution of MRSI, but the super-resolved images are often blurry compared to the experimentally-acquired high-resolution images. Attempts have been made with the generative adversarial networks to improve the image visual quality. In this work, we consider another type of generative model, the flow-based model, of which the training is more stable and interpretable compared to the adversarial networks. Specifically, we propose a flow-based enhancer network to improve the visual quality of super-resolution MRSI. Different from previous flow-based models, our enhancer network incorporates anatomical information from additional image modalities (MRI) and uses a learnable base distribution. In addition, we impose a guide loss and a data-consistency loss to encourage the network to generate images with high visual quality while maintaining high fidelity. Experiments on a 1H-MRSI dataset acquired from 25 high-grade glioma patients indicate that our enhancer network outperforms the adversarial networks and the baseline flow-based methods. Our method also allows visual quality adjustment and uncertainty estimation. Our code is available at https://github.com/dsy199610/Flow-Enhancer-SR-MRSI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ardizzone, L., et al.: Analyzing inverse problems with invertible neural networks. arXiv preprint arXiv:1808.04730 (2018)

  2. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  3. Cengiz, S., Valdes-Hernandez, M.C., Ozturk-Isik, E.: Super resolution convolutional neural networks for increasing spatial resolution of \(^{1}\)H magnetic resonance spectroscopic imaging. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 641–650. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_56

    Chapter  Google Scholar 

  4. Chen, S., Sun, S., Huang, X., Shen, D., Wang, Q., Liao, S.: Data-consistency in latent space and online update strategy to guide GAN for fast MRI reconstruction. In: Deeba, F., Johnson, P., Würfl, T., Ye, J.C. (eds.) MLMIR 2020. LNCS, vol. 12450, pp. 82–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61598-7_8

    Chapter  Google Scholar 

  5. Coman, D., et al.: Extracellular pH mapping of liver cancer on a clinical 3T MRI scanner. Magn. Reson. Med. 83(5), 1553–1564 (2020)

    Article  Google Scholar 

  6. De Graaf, R.A.: In Vivo NMR Spectroscopy: Principles and Techniques. Wiley, Hoboken (2019)

    Google Scholar 

  7. Denker, A., Schmidt, M., Leuschner, J., Maass, P.: Conditional invertible neural networks for medical imaging. J. Imaging 7(11), 243 (2021)

    Article  Google Scholar 

  8. Dinh, L., Sohl-Dickstein, J., Bengio, S.: Density estimation using real NVP. arXiv preprint arXiv:1605.08803 (2016)

  9. Dolz, J., Ben Ayed, I., Desrosiers, C.: Dense multi-path u-net for ischemic stroke lesion segmentation in multiple image modalities. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11383, pp. 271–282. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-11723-8_27

  10. Dong, S., Chen, E.Z., Zhao, L., Chen, X., Liu, Y., Chen, T., Sun, S.: Invertible sharpening network for MRI reconstruction enhancement. arXiv preprint arXiv:2206.02838 (2022)

  11. Dong, S., De Feyter, H.M., Thomas, M.A., de Graaf, R.A., Duncan, J.S.: A deep learning method for sensitivity enhancement in deuterium metabolic imaging (DMI). In: Proceedings of the 28th Annual Meeting of ISMRM. No. 0391 (2020)

    Google Scholar 

  12. Dong, S., et al.: High-resolution magnetic resonance spectroscopic imaging using a multi-encoder attention u-net with structural and adversarial loss. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2891–2895. IEEE (2021)

    Google Scholar 

  13. Dong, S., et al.: Multi-scale super-resolution magnetic resonance spectroscopic imaging with adjustable sharpness. arXiv preprint arXiv:2206.08984 (2022)

  14. Hangel, G., et al.: High-resolution metabolic imaging of high-grade gliomas using 7T-CRT-FID-MRSI. NeuroImage: Clin. 28, 102433 (2020)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Iqbal, Z., Nguyen, D., Hangel, G., Motyka, S., Bogner, W., Jiang, S.: Super-resolution 1h magnetic resonance spectroscopic imaging utilizing deep learning. Front. Oncol. 9, 1010 (2019)

    Article  Google Scholar 

  17. Kelkar, V.A., Bhadra, S., Anastasio, M.A.: Compressible latent-space invertible networks for generative model-constrained image reconstruction. IEEE Trans. Comput. Imaging 7, 209–223 (2021)

    Article  MathSciNet  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  19. Kingma, D.P., Dhariwal, P.: Glow: generative flow with invertible 1x1 convolutions. Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  20. Li, W., et al.: Best-buddy GANs for highly detailed image super-resolution. arXiv preprint arXiv:2103.15295 (2021)

  21. Li, X., et al.: Deep learning super-resolution MR spectroscopic imaging of brain metabolism and mutant IDH glioma. Neuro-Oncol. Adv. 4(1) (2022)

    Google Scholar 

  22. Liang, J., Lugmayr, A., Zhang, K., Danelljan, M., Van Gool, L., Timofte, R.: Hierarchical conditional flow: a unified framework for image super-resolution and image rescaling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4076–4085 (2021)

    Google Scholar 

  23. Lugmayr, A., Danelljan, M., Van Gool, L., Timofte, R.: SRFlow: learning the super-resolution space with normalizing flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 715–732. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_42

    Chapter  Google Scholar 

  24. Menon, S., Damian, A., Hu, S., Ravi, N., Rudin, C.: PULSE: self-supervised photo upsampling via latent space exploration of generative models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2437–2445 (2020)

    Google Scholar 

  25. Padmanabha, G.A., Zabaras, N.: Solving inverse problems using conditional invertible neural networks. J. Comput. Phys. 433, 110194 (2021)

    Google Scholar 

  26. Provencher, S.W.: Lcmodel & lcmgui user’s manual. LCModel Version 6(3) (2014)

    Google Scholar 

  27. Rezende, D., Mohamed, S.: Variational inference with normalizing flows. In: International Conference on Machine Learning, pp. 1530–1538. PMLR (2015)

    Google Scholar 

  28. Smith, S.M., et al.: Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23, S208–S219 (2004)

    Article  Google Scholar 

  29. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)

    Article  Google Scholar 

  30. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: 2003 the Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  31. Winkler, C., Worrall, D., Hoogeboom, E., Welling, M.: Learning likelihoods with conditional normalizing flows. arXiv preprint arXiv:1912.00042 (2019)

  32. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  33. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for image restoration with neural networks. IEEE Trans. Comput. Imaging 3(1), 47–57 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH grant R01EB025840, R01CA206180 and R01NS035193. The data acquisition was supported by the Austrian Science Fund (FWF) grants KLI 646, P 30701 and P 34198.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyuan Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, S. et al. (2022). Flow-Based Visual Quality Enhancer for Super-Resolution Magnetic Resonance Spectroscopic Imaging. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics