Skip to main content

3D (c)GAN for Whole Body MR Synthesis

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13609))

Included in the following conference series:

Abstract

Synthesis of images has recently seen many works that produce high-quality real world images. In the domain of medical imaging the application of deep generative models especially Generative Adversarial Networks (GANs) can be applied to many different tasks. Under the premise of the generation of high-quality images that match the distribution of the original data, the synthesized data can be used to increase the size of small datasets, or in combination with conditioning on meta data, to increase the size of underrepresented classes in the dataset. In this work we propose a model that generates 3D medical images. The model can easily be conditioned on meta data, for example available patient information. We evaluate the quality of the generated images and compare our model against the 3D-StyleGAN model which is also designed for 3D medical image synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bamberg, F., et al.: Whole-body MR imaging in the German national cohort: rationale, design, and technical background. Radiology 277(1), 206–220 (2015)

    Article  Google Scholar 

  2. Bergen, R.V., Rajotte, J.F., Yousefirizi, F., Klyuzhin, I.S., Rahmim, A., Ng, R.T.: 3D PET image generation with tumour masks using TGAN. In: Medical Imaging 2022: Image Processing, vol. 12032, p. 120321P (2022). https://doi.org/10.1117/12.2611292

  3. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. arXiv (2016)

    Google Scholar 

  4. Feng, R., Zhao, D., Zha, Z.: On noise injection in generative adversarial networks. arXiv (2020)

    Google Scholar 

  5. Granstedt, J.L., Kelkar, V.A., Zhou, W., Anastasio, M.A.: SlabGAN: a method for generating efficient 3D anisotropic medical volumes using generative adversarial networks. In: Medical Imaging 2021: Image Processing, vol. 11596, p. 1159617 (2021). https://doi.org/10.1117/12.2581380

  6. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. arXiv (2017)

    Google Scholar 

  7. Hong, S., et al.: 3D-StyleGAN: a style-based generative adversarial network for generative modeling of three-dimensional medical images. arXiv (2021)

    Google Scholar 

  8. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. arXiv (2020)

    Google Scholar 

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. arXiv (2018)

    Google Scholar 

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. arXiv (2019)

    Google Scholar 

  11. Kwon, G., Han, C., Kim, D.S.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. arXiv (2019)

    Google Scholar 

  12. Lemay, A., Gros, C., Vincent, O., Liu, Y., Cohen, J.P., Cohen-Adad, J.: Benefits of linear conditioning with metadata for image segmentation. arXiv (2021)

    Google Scholar 

  13. Lim, J.H., Ye, J.C.: Geometric GAN (2017). https://doi.org/10.48550/ARXIV.1705.02894, https://arxiv.org/abs/1705.02894

  14. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. arXiv (2021)

    Google Scholar 

  15. Perez, E., Strub, F., Vries, H.D., Dumoulin, V., Courville, A.: FiLM: visual reasoning with a general conditioning layer. arXiv (2017)

    Google Scholar 

  16. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv (2015)

    Google Scholar 

  17. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: The missing ingredient for fast stylization. CoRR abs/1607.08022 (2016), http://arxiv.org/abs/1607.08022

  18. Volokitin, A., et al.: Modelling the distribution of 3D brain MRI using a 2D slice VAE. arXiv (2020)

    Google Scholar 

  19. Yazıcı, Y., Foo, C.S., Winkler, S., Yap, K.H., Piliouras, G., Chandrasekhar, V.: The unusual effectiveness of averaging in GAN training. arXiv (2018)

    Google Scholar 

Download references

Acknowledgement

We received grant money from the U Bremen Research Alliance/AI Center for Health Care, financially supported by the Federal State of Bremen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Mensing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mensing, D., Hirsch, J., Wenzel, M., Günther, M. (2022). 3D (c)GAN for Whole Body MR Synthesis. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics