Skip to main content

Learning Generative Factors of EEG Data with Variational Auto-Encoders

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13609))

Included in the following conference series:

  • 1400 Accesses

Abstract

Electroencephalography produces high-dimensional, stochastic data from which it might be challenging to extract high-level knowledge about the phenomena of interest. We address this challenge by applying the framework of variational auto-encoders to 1) classify multiple pathologies and 2) recover the neurological mechanisms of those pathologies in a data-driven manner. Our framework learns generative factors of data related to pathologies. We provide an algorithm to decode those factors further and discover how different pathologies affect observed data. We illustrate the applicability of the proposed approach to identifying schizophrenia, either followed or not by auditory verbal hallucinations. We further demonstrate the ability of the framework to learn disease-related mechanisms consistent with current domain knowledge. We also compare the proposed framework with several benchmark approaches and indicate its classification performance and interpretability advantages.

S. Steinmann and N. Hoffmann—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Technically, [13] use stacked VAEs that have two connected latent spaces. One of the spaces is connected to label variables. However, the framework can be seen as an instance of conditional VAEs with a non-trivial structure of the latent space.

References

  1. Davatzikos, C.: Machine learning in neuroimaging: progress and challenges. Neuroimage 197, 652–656 (2019)

    Article  Google Scholar 

  2. Zhang, L., Wang, M., Liu, M., Zhang, D.: A survey on deep learning for neuroimaging-based brain disorder analysis. Front. Neurosci. 14, 779 (2020)

    Article  Google Scholar 

  3. Wahlang, I., et al.: Brain magnetic resonance imaging classification using deep learning architectures with gender and age. Sensors 22, 1766 (2022)

    Article  Google Scholar 

  4. Li, Y., et al.: A novel bi-hemispheric discrepancy model for EEG emotion recognition. IEEE Trans. Cogn. Dev. Syst. 13, 354–367 (2021)

    Article  Google Scholar 

  5. Quinn, T.P., Jacobs, S., Senadeera, M., Le, V., Coghlan, S.: The three ghosts of medical AI: can the black-box present deliver? Artif. Intell. Med. 124, 102158 (2022)

    Article  Google Scholar 

  6. Liu, X., Sanchez, P., Thermos, S., O’Neil, A.Q., Tsaftaris, S.A.: Learning disentangled representations in the imaging domain. Med. Image Anal. (2022)

    Google Scholar 

  7. Joy, T., Schmon, S.M., Torr, P.H., Siddharth, N., Rainforth, T.: Capturing label characteristics in VAEs. In: ICLR (2021)

    Google Scholar 

  8. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  9. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. CoRR, abs/1312.6114 (2014)

    Google Scholar 

  10. Locatello, F., Bauer, S., Lucic, M., Gelly, S., Schölkopf, B., Bachem, O.: Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. arXiv, abs/1811.12359 (2019)

    Google Scholar 

  11. Krishna, G., Tran, C., Carnahan, M., Tewfik, A.H.: Constrained Variational Autoencoder for improving EEG based Speech Recognition Systems. arXiv, abs/2006.02902 (2020)

    Google Scholar 

  12. Li, X., et al.: Latent factor decoding of multi-channel EEG for emotion recognition through autoencoder-like neural networks. Front. Neurosci. 14, 87 (2020)

    Article  Google Scholar 

  13. Chen, J., Yu, Z., Gu, Z.: Semi-supervised Deep Learning in Motor Imagery-Based Brain-Computer Interfaces with Stacked Variational Autoencoder (2020)

    Google Scholar 

  14. Steinmann, S., Leicht, G., Andreou, C., Polomac, N., Mulert, C.: Auditory verbal hallucinations related to altered long-range synchrony of gamma-band oscillations. Sci. Rep. 7(1), 1–10 (2017)

    Article  Google Scholar 

  15. Chen, T.Q., Li, X., Grosse, R.B., Duvenaud, D.K.: Isolating sources of disentanglement in variational autoencoders. In: NeurIPS (2018)

    Google Scholar 

  16. Kumar, A., Sattigeri, P., Balakrishnan, A.: Variational Inference of Disentangled Latent Concepts from Unlabeled Observations. arXiv, abs/1711.00848 (2018)

    Google Scholar 

  17. Jardri, R., Pouchet, A., Pins, D., Thomas, P.: Cortical activations during auditory verbal hallucinations in schizophrenia: a coordinate-based meta-analysis. Am. J. Psychiatry 168(1), 73–81 (2011)

    Article  Google Scholar 

  18. Lavigne, K.M., et al.: Left-dominant temporal-frontal hypercoupling in schizophrenia patients with hallucinations during speech perception. Schizophr. Bull. 41(1), 259–67 (2015)

    Article  Google Scholar 

  19. Hwang, M., et al.: Auditory hallucinations across the psychosis spectrum: evidence of dysconnectivity involving cerebellar and temporal lobe regions. NeuroImage Clin. 32, 102893 (2021)

    Article  Google Scholar 

  20. Papathanassiou, D., Etard, O., Mellet, E., Zago, L., Mazoyer, B., Tzourio-Mazoyer, N.: A common language network for comprehension and production: a contribution to the definition of language epicenters with PET. Neuroimage 11, 347–357 (2000)

    Article  Google Scholar 

  21. Flinker, A., et al.: Redefining the role of Broca’s area in speech. Proc. Natl. Acad. Sci. 112, 2871–2875 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Zhdanov .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 258 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhdanov, M., Steinmann, S., Hoffmann, N. (2022). Learning Generative Factors of EEG Data with Variational Auto-Encoders. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics