Skip to main content

Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scans

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2022)

Abstract

Unsupervised anomaly detection models that are trained solely by healthy data, have gained importance in recent years, as the annotation of medical data is a tedious task. Autoencoders and generative adversarial networks are the standard anomaly detection methods that are utilized to learn the data distribution. However, they fall short when it comes to inference and evaluation of the likelihood of test samples. We propose a novel combination of generative models and a probabilistic graphical model. After encoding image samples by autoencoders, the distribution of data is modeled by Random and Tensorized Sum-Product Networks ensuring exact and efficient inference at test time. We evaluate different autoencoder architectures in combination with Random and Tensorized Sum-Product Networks on mammography images using patch-wise processing and observe superior performance over utilizing the models standalone and state-of-the-art in anomaly detection for medical data.

M. Dietrichstein and D. Major—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bhatt, N., Prados, D.R., Hodzic, N., Karanassios, C., Tizhoosh, H.R.: Unsupervised detection of lung nodules in chest radiography using generative adversarial networks. In: Proceedings of EMBC, pp. 3842–3845. IEEE (2021)

    Google Scholar 

  2. Bowles, C., et al.: Brain lesion segmentation through image synthesis and outlier detection. NeuroImage: Clin. 16, 643–658 (2017)

    Article  Google Scholar 

  3. Choi, Y., Vergari, A., Van den Broeck, G.: Probabilistic circuits: a unifying framework for tractable probabilistic models. Technical report, UCLA (2020)

    Google Scholar 

  4. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Proceedings of the International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2000)

    Google Scholar 

  5. Higgins, I., et al.: Beta-VAE: learning basic visual concepts with a constrained variational framework. In: ICLR (2017)

    Google Scholar 

  6. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  7. Lee, R.S., Gimenez, F., Hoogi, A., Miyake, K.K., Gorovoy, M., Rubin, D.L.: A curated mammography data set for use in computer-aided detection and diagnosis research. Sci. Data 4(1), 1–9 (2017)

    Article  Google Scholar 

  8. Marimont, S.N., Tarroni, G.: Anomaly detection through latent space restoration using vector quantized variational autoencoders. In: Proceedings of ISBI, pp. 1764–1767. IEEE (2021)

    Google Scholar 

  9. Masci, J., Meier, U., Cireşan, D., Schmidhuber, J.: Stacked convolutional auto-encoders for hierarchical feature extraction. In: Honkela, T., Duch, W., Girolami, M., Kaski, S. (eds.) ICANN 2011. LNCS, vol. 6791, pp. 52–59. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21735-7_7

    Chapter  Google Scholar 

  10. Van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. In: Proceedings of NIPS, pp. 6309–6318 (2017)

    Google Scholar 

  11. Peharz, R., et al.: Einsum networks: fast and scalable learning of tractable probabilistic circuits. In: Proceedings of ICML, pp. 7563–7574. PMLR (2020)

    Google Scholar 

  12. Peharz, R., et al.: Random sum-product networks: a simple and effective approach to probabilistic deep learning. In: Uncertainty in Artificial Intelligence, pp. 334–344. PMLR (2020)

    Google Scholar 

  13. Poon, H., Domingos, P.: Sum-product networks: a new deep architecture. In: Proceedings of ICCV Workshops, pp. 689–690. IEEE (2011)

    Google Scholar 

  14. Sato, D., et al.: A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, p. 105751P. International Society for Optics and Photonics (2018)

    Google Scholar 

  15. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  16. Seeböck, P., et al.: Exploiting epistemic uncertainty of anatomy segmentation for anomaly detection in retinal OCT. IEEE Trans. Med. Imaging 39(1), 87–98 (2019)

    Article  Google Scholar 

  17. Simarro Viana, J., de la Rosa, E., Vande Vyvere, T., Robben, D., Sima, D.M., et al.: Unsupervised 3D brain anomaly detection. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12658, pp. 133–142. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72084-1_13

    Chapter  Google Scholar 

  18. Trapp, M., Peharz, R., Ge, H., Pernkopf, F., Ghahramani, Z.: Bayesian learning of sum-product networks. In: Proceedings of NeurIPS, pp. 6347–6358 (2019)

    Google Scholar 

  19. Wei, Q., Ren, Y., Hou, R., Shi, B., Lo, J.Y., Carin, L.: Anomaly detection for medical images based on a one-class classification. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, pp. 375–380. SPIE (2018)

    Google Scholar 

  20. Wild, C., Weiderpass, E., Stewart, B.W.: World Cancer Report: Cancer Research for Cancer Prevention. IARC Press (2020)

    Google Scholar 

  21. Zimmerer, D., Isensee, F., Petersen, J., Kohl, S., Maier-Hein, K.: Unsupervised anomaly localization using variational auto-encoders. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 289–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_32

    Chapter  Google Scholar 

Download references

Acknowledgement

VRVis is funded by BMK, BMDW, Styria, SFG, Tyrol and Vienna Business Agency in the scope of COMET - Competence Centers for Excellent Technologies (879730) which is managed by FFG. Thanks go to AGFA HealthCare, project partner of VRVis, for providing valuable input. Martin Trapp acknowledges funding from the Academy of Finland (347279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Major .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dietrichstein, M. et al. (2022). Anomaly Detection Using Generative Models and Sum-Product Networks in Mammography Scans. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics