Skip to main content

Image Translation Based Nuclei Segmentation for Immunohistochemistry Images

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13609))

Included in the following conference series:

Abstract

Numerous deep learning based methods have been developed for nuclei segmentation for H &E images and have achieved close to human performance. However, direct application of such methods to another modality of images, such as Immunohistochemistry (IHC) images, may not achieve satisfactory performance. Thus, we developed a Generative Adversarial Network (GAN) based approach to translate an IHC image to an H &E image while preserving nuclei location and morphology and then apply pre-trained nuclei segmentation models to the virtual H &E image. We demonstrated that the proposed methods work better than several baseline methods including direct application of state of the art nuclei segmentation methods such as Cellpose and HoVer-Net, trained on H &E and a generative method, DeepLIIF, using two public IHC image datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdolhoseini, M., Kluge, M.G., Walker, F.R., Johnson, S.J.: Segmentation of heavily clustered nuclei from histopathological images. Sci. Rep. 9(1), 1–13 (2019)

    Article  Google Scholar 

  2. Bayramoglu, N., Kaakinen, M., Eklund, L., Heikkila, J.: Towards virtual H &E staining of hyperspectral lung histology images using conditional generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 64–71 (2017)

    Google Scholar 

  3. Caicedo, J.C., et al.: Nucleus segmentation across imaging experiments: the 2018 data science bowl. Nat. Methods 16(12), 1247–1253 (2019)

    Article  MathSciNet  Google Scholar 

  4. Chen, M., Artières, T., Denoyer, L.: Unsupervised object segmentation by redrawing. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  5. Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 518–521. IEEE (2009)

    Google Scholar 

  6. Di Cataldo, S., Ficarra, E., Acquaviva, A., Macii, E.: Automated segmentation of tissue images for computerized IHC analysis. Comput. Methods Programs Biomed. 100(1), 1–15 (2010)

    Article  Google Scholar 

  7. Ghahremani, P., et al.: Deep learning-inferred multiplex immunofluorescence for immunohistochemical image quantification. Nat. Mach. Intell. 4(4), 401–412 (2022)

    Article  Google Scholar 

  8. Ghahremani, P., et al.: Deepliif (2022). https://github.com/nadeemlab/DeepLIIF

  9. Glass, B., et al.: 821 machine learning models can quantify cd8 positivity in lymphocytes in melanoma clinical trial samples. J. Immunother. Cancer 9(Suppl 2), A859–A859 (2021)

    Article  Google Scholar 

  10. Graham, S., et al.: Hover-net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med. Image Anal. 58, 101563 (2019)

    Google Scholar 

  11. Gutman, D.A., et al.: The digital slide archive: a software platform for management, integration, and analysis of histology for cancer research. Cancer Res. 77(21), e75–e78 (2017). https://doi.org/10.1158/0008-5472.CAN-17-0629

    Article  Google Scholar 

  12. Han, L., Yin, Z.: Unsupervised network learning for cell segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 282–292. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_27

    Chapter  Google Scholar 

  13. Hatipoglu, N., Bilgin, G.: Cell segmentation in histopathological images with deep learning algorithms by utilizing spatial relationships. Med. Biol. Eng. Comput. 55(10), 1829–1848 (2017). https://doi.org/10.1007/s11517-017-1630-1

    Article  Google Scholar 

  14. Ho, M.Y., Chapman, V., Ali, Z., Graham, S., Vu, Q.D.: Hover-net (2022). https://github.com/vqdang/hover_net

  15. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1125–1134 (2017)

    Google Scholar 

  16. Kaplan, K.: Quantifying IHC data from whole slide images is paving the way toward personalized medicine. MLO Med. Lab. Obs. 47, 20–21 (2015)

    Google Scholar 

  17. Kim, J., Kim, M., Kang, H., Lee, K.H.: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: International Conference on Learning Representations (2020). https://openreview.net/forum?id=BJlZ5ySKPH

  18. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  19. Mahbod, A., et al.: CryoNuSeg: a dataset for nuclei instance segmentation of cryosectioned H &E-stained histological images. Comput. Biol. Med. 132, 104349 (2021)

    Google Scholar 

  20. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  21. Rivenson, Y., de Haan, K., Wallace, W.D., Ozcan, A.: Emerging advances to transform histopathology using virtual staining. BME Front. 2020 (2020)

    Google Scholar 

  22. Rivenson, Y., et al.: Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng. 3(6), 466–477 (2019)

    Article  Google Scholar 

  23. Schmidt, U., Weigert, M.: Stardist (2022). https://github.com/stardist/stardist

  24. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Medical Image Computing and Computer Assisted Intervention - MICCAI 2018–21st International Conference, Granada, Spain, 16–20 September 2018, Proceedings, Part II, pp. 265–273 (2018). https://doi.org/10.1007/978-3-030-00934-2_30

  25. Stringer, C.: Cellpose (2022). https://github.com/MouseLand/cellpose

  26. Stringer, C., Wang, T., Michaelos, M., Pachitariu, M.: Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18(1), 100–106 (2021)

    Article  Google Scholar 

  27. Swiderska-Chadaj, Z., et al.: Learning to detect lymphocytes in immunohistochemistry with deep learning. Med. Image Anal. 58, 101547 (2019)

    Google Scholar 

  28. Xu, Z., Moro, C.F., Bozóky, B., Zhang, Q.: Gan-based virtual re-staining: a promising solution for whole slide image analysis. arXiv preprint arXiv:1901.04059 (2019)

  29. Yang, L., et al.: NuSeT: a deep learning tool for reliably separating and analyzing crowded cells. PLoS Comput. Biol. 16(9), e1008193 (2020)

    Google Scholar 

  30. Zhang, Y., de Haan, K., Rivenson, Y., Li, J., Delis, A., Ozcan, A.: Digital synthesis of histological stains using micro-structured and multiplexed virtual staining of label-free tissue. Light Sci. Appl. 9(1), 1–13 (2020)

    Article  Google Scholar 

  31. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger Trullo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trullo, R., Bui, QA., Tang, Q., Olfati-Saber, R. (2022). Image Translation Based Nuclei Segmentation for Immunohistochemistry Images. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Zhu, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2022. Lecture Notes in Computer Science, vol 13609. Springer, Cham. https://doi.org/10.1007/978-3-031-18576-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18576-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18575-5

  • Online ISBN: 978-3-031-18576-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics