2201.12563v1 [cs.CR] 29 Jan 2022

arxXiv

Dissimilar Redundancy in DeFi

Daniel Perez
Imperial College London

Abstract—The meteoric rise of Decentralized Finance (DeFi)
has been accompanied by a plethora of frequent and often
financially devastating attacks on its protocols. There have been
over 70 exploits of DeFi protocols, with the total of lost funds
amounting to approximately 1.5bn USD. In this paper, we intro-
duce a new approach to minimizing the frequency and severity
of such attacks: dissimilar redundancy for smart contracts. In
a nutshell, the idea is to implement a program logic more than
once, ideally using different programming languages. Then, for
each implementation, the results should match before allowing the
state of the blockchain to change. This is inspired by and has clear
parallels to the field of avionics, where on account of the safety-
critical environment, flight control systems typically feature
multiple redundant implementations. We argue that the high
financial stakes in DeFi protocols merit a conceptually similar
approach, and we provide a novel algorithm for implementing
dissimilar redundancy for smart contracts.

I. INTRODUCTION

Decentralized Finance (DeFi) Protocol hacks are frequent -
with more than 70 to date totalling losses of more than 1.5bn
USD [1]. For a financial infrastructure that is purportedly
going to replace traditional finance, this is worrisome. The
severity of the issue of hacks is exacerbated by the non-
custodial nature of DeFi systems. Unlike in traditional finan-
cial systems, where in the event of financial disaster, there
are often safety-nets such as the state or insurers, in the DeFi
setting there are no such safety provisions at scale. Moreover,
while there is a nascent insurance market for DeFi insurance,
e.g. [2], such solutions provide only a (necessary) second-best
solution: providing coverage in the event of a DeFi system
failure. A first-best solution is to prevent the failure in the
first place.

Preventing such failures is challenging. Leaving aside the
security of the underlying blockchain layer, the two main pil-
lars of DeFi protocol security are (i) extensive smart contract
testing and (ii) code audits. Both of these have drawbacks.
Ensuring adequate test coverage is very challenging, not least
when the objective is to ensure all edge-cases are covered in
the tests. While testing is an essential part of smart contract
development, we suggest that it is not realistic to expect even
best practice testing with a very high degree of coverage to be
sufficient to prevent all bugs. Code audits are often performed
by external teams under time pressure, with audits typically
lasting 2-3 weeks from start to finish, even for teams with
no prior familiarity with the code base. Even for the most
experienced software engineer, native to DeFi, it is wishful
thinking to believe that they will always be able to catch
every bug. The problem is compounded by smart contract
composability - where DeFi protocols are snapped together
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like DeFi lego - which serves to increase the the challenge as
tests and auditors now have to anticipate bugs that could arise
with as yet unseen smart contracts.

This paper presents a new approach to preventing failures
at the smart contract level: dissimilar redundancy. In aviation,
the safety-critical nature has led to the emergence of a practice
of implementing multiple separate and redundant flight control
systems. For example, the Boeing 777 [3] featured a Fly-By-
Wire flight control system that had to meet extremely high
levels of functional integrity and reliability. To do this, it had
three separate primary flight computers, with each computer
containing three dissimilar internal computational lanes. The
lanes differed in terms of compilers, power supply units and
microprocessors, with, for example, lane 1 using the AMD
29050, lane 2 the Motorola 68040 and lane 3 the Intel 80486.
Within each of the three flight computers, two of the lanes
acted as monitors while the third lane was in command. In
this way, the flight computer features a form of redundancy
that is dissimilar, with the multiple lanes being resistant to
bugs induced by microprocessors or compilers.

We apply the core of this idea to smart contracts. We imple-
ment and detail a system based on a proxy pattern which relies
on dissimilar implementations of a DeFi protocol, and cross-
checks one against the other before effecting any on-chain state
change. On Ethereum, this approach has already been taken
for client implementations, with the community maintaining
multiple open-source clients, developed by different teams and
using different programming languages [4]. The purpose of
this approach is to strengthen the network and make it more
diverse, with a view to avoiding a single client dominating the
network in order to remove single points of failure. We extend
this concept to the smart contract layer itself.

Our contributions are as follows.

« We introduce the notion of dissimilar redundancy for
DeFi protocols

o« We provide the first implementation of a protocol for
dissimilar redundancy for a DeFi protocol!

« We evaluate the protocol on a smart contract auction sys-
tem implemented in both Solidity and Vyper, verify that
a fuzzing approach would be able to detect purposefully
introduced bugs, and provide the costs in USD of using
a protocol for dissimilar redundancy

Uhttps://github.com/danhper/smart- contract-dissimilar-redundancy
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Outline

We set out the necessary background in Section II, provide
our methodology in Section III, evaluate it in Section IV, con-
sider related work in Section VI and conclude in Section VII.

II. BACKGROUND

In this section, we provide the necessary background re-
garding smart contracts, their potential vulnerabilities, as well
as the cost of their execution.

A. Smart contracts

Smart contracts are program objects that are native to
blockchains. In the context of Ethereum, such smart contracts
require that the underlying blockchain is a transaction-based
state-machine. State changes occur on a blockchain through
transactions, which are atomic: they either succeed, where the
state is updated, or fail, where the state of the blockchain
remains unchanged. For the approach we take below, atomicity
is a crucial property of smart contracts as it provides that
the blockchain cannot be left in an invalid or inconsistent
state. Communication between two smart contracts occurs via
message calls within the same execution context.

B. Scaling solutions

Given the high cost of using Ethereum, many scaling
solutions have emerged trying to solve this issue. At the heart
of these approaches is taking computation off the layer-one
blockchain, and instead performing this on a separate later
while using the layer-one blockchain as an anchor of trust.
Such protocols are typically denoted layer two protocols, the
name for a family of solutions that seek to allow applications
to scale by processing transactions off the main blockchain.

In the context of Ethereum, one approach is to use
rollups [5]. Rollups perform transaction execution away from
the layer-one blockchain but store transaction data on-chain.
In doing so, the security properties of layer-one are leveraged
as an anchor of trust by the rollup approach, which is then
able to perform transaction execution off-chain.

For a full summary of these approaches, see [6].

C. Smart contract vulnerabilities

Over the years, there have been many smart contract exploits
often leading to significant losses of money [7], [8]. There
are many different ways in which smart contracts can be
exploited but on a very high level, attacks can be classi-
fied as “technical”, which means that an attacker can steal
funds by exploiting a technical issue, such as a bug, in the
contract, or “economical”, which means that the attacker can
exploit a contract through incentive that might not be properly
aligned [9]. For the purpose of this paper, we will focus on
technical security of smart contracts. Within technical security
itself, there is also a myriad of different potential issues,
such as contract vulnerable to re-entrancy [10] or flash loan
attacks [11]. However, another very common way in which
contracts fail is simply logical bugs. Such logical bugs have
cost millions to many smart contract projects. For example,
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Fig. 1: Overview of our dissimilar redundancy framework

Compound was recently victim of such an incident [12], that
cost the protocol over 90 million USD. The error was as simple
as a greater than symbol that should have been greater or equal.

III. METHODOLOGY
A. Overview

We now turn to how we use the approach of dissimilar
redundancy in the context of Ethereum. At the centre of our
approach is the use of a proxy architecture pattern. With
a proxy pattern, all message calls to a contract C first go
through a proxy contract P that serves to direct the message
calls to contract C. With this pattern, contract C contains
the actual implementation logic while contract P provides a
storage layer. At present, a common use of this pattern is
to provide contract upgradeability [13], [14]: while contracts
cannot be directly upgraded once deployed, upgradeability can
be mimicked by changing where contract P delegates calls to
from contract C to contract C;.

We expand on this pattern: in our pursuit of dissimilar re-
dundancy, we allow P to delegate to multiple implementations
at once. This is in contrast to the standard pattern which only
permits delegation to a single implementation at a time. In a
nutshell, our proxy contract P sequentially calls two different
implementations - supposedly identical in logic - C; and Cs
and ensures that the data returned by function calls to each
implementation as well as return values from an arbitrary



Algorithm 1 Dissimilar redundancy framework call delegation

function CALLDELEGATE(impl, data, checks, isLast)
(ok, retData) <— DELEGATETO(impl, data)
checkResults « RUNCHECKS(checks)
checksHash < HASHCHECKS(checkResults)
if isLast then
return (ok, retData, checksHash)
else
revert (ok, retData, checksHash)
end if
end function

function REDUNDANTCALL(implementations, data)
n < LENGTH(implementations)
signature <— GETSIG(data)
checks <— GETCHECKS(signature)

for : < 0,n — 1 do
impl < implementations|[]
last <— ¢ ==n—1

callData <— ENCODE(CallDelegate, impl, data, checks, last)
(_, delegateRet) <— DELEGATETO(this, callData)
(ok, retData, checksHash) <— DECODE(delegateRet)

if ISDEFINED(previousOk) then
ASSERT(previousOk == ok)
ASSERT(previousRetData == retData)
ASSERT(previousChecksHash == checksHash)

else
previousOk <— ok
previousRetData < retData
previousChecksHash <— checksHash

end if

end for

return (ok, retData)
end function

number of checks provided by the contract developer match. In
this context, a check is a call to a contract’s function of which
the return value is deemed relevant to the function called. For
example, in the context of an ERC-20 token [15], the developer
might want to add balanceOf (from) and balanceOf (to)
as a check for transferFrom(from, to, amount). The
proxy will then call balanceOf twice after each call to
transferFrom and ensure that the results are consistent
among the implementations.

Although the overall idea is straightforward, the actual
implementation requires several technical difficulties to be
overcome. We show an overview of the framework in Figure 1.

B. The technical challenges

a) Calling implementations with the same state: The first
difficulty is that our approach requires both implementations
to be called with the same initial state, sequential contract
calls would typically modify this state. To overcome this, all
state changes made by a call to an implementation need to
be rolled back before we call the next implementation. We
leverage the atomic nature of Ethereum’s calls to achieve this:

if a transaction raises an error, the state reverts to the initial
state.

In our approach, instead of the proxy directly delegating to
an implementation, it first delegates to itself, passing in the call
data as an argument along with the implementation to call and
the checks to perform. In this delegated call, the proxy then
delegates to the implementation, executes all the checks and
combines their result in a single hash value. It then reverts the
execution to rollback the changes made by the implementation
and returns the checks hash as the revert data. The only
exception to this is the call to the last implementation, where
it returns the checks hash normally instead of reverting, to
persist the changes. We provide a high-level overview of the
delegation logic in Algorithm 1. Low-level implementation
details can be found in our open-source implementation.

b) Check encoding: The second difficulty concerns how
the checks to be performed after each execution should be
encoded. A check is a call to a contract that needs to be
consistent after each execution. To make the proxy retain the
interface of a proxied implementation, we must pre-register the
checks with the proxy, rather than specifying the checks with
each call. A naive implementation would permit the developer
to register a function with pre-encoded arguments to be called
after any call. However, such an implementation would have
severe limitations. Pre-encoding arguments makes calls such
as the one described above for balanceOf impossible, as
these depend on call data and transaction information—this
information is only available at runtime. Since these calls need
to be well targeted for them to be effective and find poten-
tial discrepancies among implementations, such an approach
would not be viable.

Instead, we implement an approach which achieves the
following objectives:

1) the registration of per-function checks, without pre-
encoded arguments. For example: transferFrom and
approve could have a different set of checks registered.

2) call data and transaction information should be accessible
during the checks

The first objective is easily achieved by storing a mapping
from function signature to checks and retrieving the relevant
checks depending on the function signature called by the
current call to the proxy. The second objective is more
challenging, as the developer must be able to register checks
upfront that rely on information only available when the
function is executed. To allow for this, rather than registering
checks by passing in the arguments themselves, we design a
simple byte encoding for the arguments that allows abstract
arguments, registered with the checks, to be mapped to the
concrete arguments that are computed when executing the
checks. For example, an abstract argument could be “the first
argument of the current call” or “the sender of the current
transaction”. When executing the checks, the proxy will map
these to the actual value of the first argument or the sender
of the transaction, and encode these when calling the check
function.
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Fig. 2: Encoding for registering checks. C is the number of
arguments. The three types of arguments are shown. Type
0 represents a static argument and N is the length of the
static content. Type 1 represents call data argument where O
and L are the offset and length to retrieve from call data.
Type 2 represents environment argument and T is the type of
environment variable (e.g. msg. sender) to use

tokenProxy.registerCheck (sig["transferFrom"],
tokenProxy, encode_args (Token, "balanceOf", [
(ArgumentType.CallData, (4, 32))1))

tokenProxy.registerCheck (sig["transferFrom"],
tokenProxy, encode_args (Token, "balanceOf", [
(ArgumentType.CallData, (36, 32))1))

tokenProxy.registerCheck (sig["transferFrom"],
tokenProxy, encode_args (Token, "allowance", [
(ArgumentType.CallData, (4, 32)),
(ArgumentType.Env, EnvArg.Sender)]))

Fig. 3: Example checks registration for an ERC-20 token
transferFrom function

In Figure 2, we show how we encode abstract arguments to
register the checks. The first four bytes are, as for regular calls,
the signature of the function to be called. The next byte is the
number of arguments to pass to the function. Each argument
can then be one of three types: a static argument, a call data
argument or an environment argument. These types determine
how the concrete argument will be computed when the contract
is called:

o A static argument: simply passed through to the function
as a concrete argument

o A call data argument: the given bytes from the transaction
call data are extracted and passed as an argument

¢ An environment argument: looks up the concrete ar-
gument in the current transaction. The argument to be
looked up in the environment, e.g., the sender of the
transaction or the current block timestamp is specified
by a single byte in the abstract argument.

Once all the abstract arguments are converted into their con-
crete counterparty, they are encoded along with the function
signature and the check can be performed.

This encoding provides enough flexibility to perform a wide
variety of different checks.

c) Toy example: We show an example of such checks
in Figure 3, where we register three different checks for
the transferFrom function of an ERC-20 token. The two
first checks are for the balance of the first argument (the
address sending tokens) and the second argument (the address
receiving tokens) of the transferFrom. In both cases, we
extract these arguments from the call data. The third check
is for the allowance and also uses the first argument but also
the sender of the transaction, as their allowance is expected to
decrease after a successful call to transferFrom.

Now that we have established the methodology behind this
approach to implementing dissimilar redundancy, we turn to
an evaluation.

IV. EVALUATION

To evaluate our solution, we use a smart contract imple-
menting a simple auction system. The rules of the auction
system are as follow:

1) A seller starts an auction with an NFT of their choice

and sets an end time

2) The NFT is transferred to the auction contract

3) Any user can bid in the auction and the bid must be

strictly greater than the previous highest until the auction
ends

4) After the auction ends, anyone can “finalize” the auction,

which will either transfer the NFT to the winner of the
auction or transfer it back to the owner if there were no
bids

We implement the auction contract with the same behavior
in both Solidity and Vyper but purposefully introduce a couple
of implementation bugs in one of the two contracts. We then
check whether these bugs would be detected by fuzzing the
contract and causing the proxy to fail due to inconsistencies
in the evaluation results.

In particular, we introduce two bugs to the Vyper version of
the contract. First, rather than checking than the bid is strictly
greater than the previous one, we check that the bid is greater
or equal. This means that in this particular case, the Solidity
version will revert the transaction while the Vyper one will
successfully execute. Second, we omit the case where there
were no bidders. As a result, both versions will successfully
execute but for the Vyper implementation, the ownership of
the NFT will still be the auction contract in the case there
were no bidders.

A. Development-time testing

We first test our code locally to show how our approach can
make bug-detection at development time significantly easier.

To test our code, we use Python in combination with
the Brownie framework 2 for testing and the Hypothesis
library [16] to generate test cases. We show the most important
part of the code we use to our auction contract in Figure 4.
We note that the ensure_consistent context manager is

Zhttps://eth-brownie.readthedocs.io/



auction_proxy.registerCheck (sig["finalize"],
nft_collection.address,
encode_args (

NftCollection, "ownerOf", [

(ArgumentType.Static, ("uint256", NFT_ID))]
))
@given (bids=st.lists(st.tuples(
st.integers (min_value=0), addresses())))
def test_bid(bids):
with ensure_consistent () :
for value, account in bids:
auction_proxy.bid ({"from": account,
"value": value})
@given (bids=st.lists(st.tuples(
st.integers (min_value=0), addresses())))
def test_finalize (bids):
with ensure_consistent () :
for value, account in bids:
auction_proxy.bid ({"from": account,
"value": value})

chain.sleep (3600)
auction_proxy.finalize ()

Fig. 4: Testing code using dissimilar redundancy

Falsifying example:
bids=][

(1, <Account ’'0x66aB6...5871’>),

(1, <Account ’'0x66aB6...5871">)],

test_bid_consistency (

)

FAILED tests/test_auction.py::test_bid -
brownie.exceptions.VirtualMachineError: revert:
all implementations must return the same success

(a) Failing test case for the bid function showing a failure after two
bids with the same value were placed

Falsifying example:
bids=[]
)

test_finalize_consistency (

FAILED tests/test_auction.py::test_finalize -
brownie.exceptions.VirtualMachineError: revert:
all implementations must return the same checks

(b) Failing test case for the finalize function showing a failure
when no bids have been placed

Fig. 5: Failing tests when fuzzing the auction contract with a
correct and an incorrect implementation

implemented as part of our tooling and will only fail if a call
reverts because implementations did not behave similarly.

In the tests, we first register a check for finalize that will
look up the owner of the NFT that was on sale. For testing
both bid and finalize, we generate random bids, where a
bid is an account and value (price to pay for the auction) pair.
For bid, we only execute all the bids while for finalize, we
also ensure that the auction is ended and execute finalize.

Using this approach, trying to fuzz the contract requires

performing differential fuzzing on the different implemen-
tations of the contract logic registered by the proxy. This
makes it possible to easily identify the cases where the two
implementations do not behave in the same way.

In Figure 5, we show the results of these tests. Note that we
fix the first failing test before proceeding to the second one.

For the bid function, the test framework correctly outputs
a failure when two bids are placed with the same value in
a row. The failure scenario is clear from the test output, as
the two bids of the input both have a value of 1. The error
message mentions that all implementations should return the
same ‘“success”’, which means that one of the implementations
successfully executed (the bug-ridden version), while the other
failed to executed.

The test for the £inalize function also correctly fails with
an example containing no bids. This is consistent with the bug
in the Vyper version of the Solidity which does not transfer
back the token properly to its original owner. The failing test
also mentions that all implementations must return the same
checks which means that all implementations had the same
success status (they all succeeded in this particular case) but
the checks did not return the same value. Indeed, a check was
registered to look up the NFT owner.

Overall, with this example, we have seen that with only a
few lines of code, it was possible to have extensive coverage
of the tested function that is able to automatically find discrep-
ancies among implementations and indicate to the developer
the test cases that would yield different results.

Name Address

Auction proxy 0xAd837BDD116C14aA82311Db7D1879C7cDDCEA283
Auction (Sol, proxied) 0xdb85f3DB2aA6E5e294485972ABE921bel88b6A37
Auction (Vy, proxied) 0x9FD31161360B5E772£2b9C469DAA35E679273DbE
Auction (Sol, standalone) 0xE575cCb0213393eBFc9258013af1c43e9E416544

Auction (Vy, standalone) 0xEe164319fE07127Efc8fdf8b3e99eal36F8CISSE

TABLE I: Contracts deployed on Polygon mainnet. “Sol”
are Solidity contracts. “Vy” are Vyper contracts. “Proxied”
are contracts used by the proxy. “standalone” are contracts
interacted with directly.

B. Real-world deployment

An important strength of our approach is that it is possible
to utilize the two implementations not only at development and
testing time but also after the contract is deployed, ensuring
that all the transactions executed will always be consistent
across the different implementations provided. To demonstrate
how this would perform on a real-world blockchain, we deploy
our auction and its two implementations on the Polygon
main network, ensure that the calls that would trigger revert
correctly, and measure the cost overhead of our approach. We
provide a list of all the deployed contracts in Table 1.

To be able to give comparable results, we deploy our
proxy using the Solidity and Vyper implementations, as well
as a standalone version of each implementation. During our
interactions with the contracts, we maintain a fixed gas price
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Start First bid Subsequent bid Finalize
Proxied 0.0229 0.0092 0.006 0.0144
Solidity 0.0094 0.0045 0.0029 0.0052
Vyper 0.0108 0.0045 0.0029 0.0071

TABLE II: USD cost® of calling different functions of the
auction contract with and without dissimilar redundancy proxy.
The gas price is fixed to 30 Gwei.

of 30 Gwei, which at the time of writing was enough for near
instantaneous inclusion in a Polygon block.

We summarize the cost nominated in US dollars of all the
interactions with our auction contracts in Table II. We split
the costs of the first and the subsequent bids, since the first
bid allocates storage, using more gas than subsequent ones.
Since the proxy is using both the Solidity and the Vyper
implementation, a lower bound for the cost is the sum of
the cost of each individual implementation. The difference
between the sum of these costs and the cost of calling the
proxy is the overhead of the proxy itself, including the cost of
calling checks after each call and checking consistency among
results. In our example, only finalize has a check registered,
to check for the owner of the NFT after execution. For the calls
to start and bid, respectively about 1.2% and 2.2% of the
total cost is part of the proxy overhead, the rest of the cost
being used by the actual underlying functions. For finalize,
the overhead is understandably higher as a check is registered.
Indeed, about 14.5% of the cost is used by the proxy itself.

We also check that a transaction that would cause our
correct and our buggy implementation to diverge would cor-
rectly revert. To do so, we bid using subsequently twice
the same amount, which fails for the proxied version (tx
0x5f840a...6dc334c) by returning the same error as the
one we saw during the tests. As a sanity check, we try the same
sequence of bids on the standalone implementations and the
Solidity version reverts correctly (tx 0x406ad7...7759673)
while the Vyper one succeeds (tx 0x888189...7df41e8).

V. LIMITATIONS

While our approach comes with strong benefits in terms
of reliability, it has some limitations. In this section, we will
go over these limitations and provide details on how some of
them could be tackled.

Transaction fees. As we have seen in the previous section, this
approach will always at least double the cost of transactions
and potentially increase it further if many calls need to be
performed. There is not any direct way to prevent this issue
or improve it significantly at the implementation level. This
means that using such an approach on a expensive network,
such as Ethereum, is almost unfeasible, as the price increase
for transactions would likely be unacceptable for many users.
However, more and more layer two solutions are being de-
veloped, with transaction fees orders of magnitude lower than

3We use the December 12th 2021 price of 2.15 USD per MATIC token,
Polygon’s native token used to pay for gas fees

what can be seen on Ethereum mainnet. This is for example
the case of Polygon mainnet, which we used for the evaluation
earlier. As we can see in Table II, although the costs have been
doubled, this represents an increase in the order of a cent
in the worst case. As Ethereum is moving towards a layer
2 future [17] and transaction fees become negligible, the fee
overhead of our approach might become less and less of a
concern.

Development cost. Another obvious limitation is the devel-
opment cost of another implementation of the same contract.
However, there are several arguments why this might not be
a critical issue.

First, such an approach has been seen with Ethereum clients,
which are vastly larger in terms of complexity and code base
than most protocols built on top of smart contracts. In a
similar way that the Ethereum Foundation distributes fund
to help external teams maintain clients, a well established
protocol could potentially operate similarly to have alternative
implementation maintained.

Second, given the often enormous amount of money at
stake, a significant part of the smart contract development
goes into testing rather than simply implementing the contract.
For example, Uniswap V3 [18] has almost twice more test
code than actual implementation. Our approach being highly
complementary to regular testing, it could be integrated as part
of the development process as yet another way to reduce the
number of potential bugs or vulnerabilities in the contract.
Storage layout. Another limitation of our approach is that
all the implementations must use exactly the same storage
layout. The proxy contract will be storing all the state of
the contract, so all implementations must read at the same
location in storage to be able to retrieve the information
they are looking for. One of the main drawback is that it
imposes some rigidity on alternative implementations, which
might make it less likely to try implementing the logic in
very similar way and potentially replicate bugs in multiple
implementations. Another issue is that this makes it hard
to combine implementations written in Solidity and Vyper.
The two languages use mostly the same mapping from state
variable to Ethereum storage slot but for mappings, they use a
very slightly different way to compute the storage slot which
makes it impossible to use this approach for any contract using
mappings. However, this issue is trivial to fix, as it would only
require a very minor, albeit backward incompatible, change in
the Vyper compiler.

VI. RELATED WORK

We first present how a similar approach has been helpful
for Ethereum clients and then present some related research
discussing differential fuzzing.

Ethereum clients. From early on, the Ethereum network has
been running using different client implementations. The goal
of having multiple clients has always been to make the network
more robust and ensure that it does not fail in case there would
be a bug, a vulnerability, or an avenue for a potential denial-of-
service (DoS) attack in one of the implementations. In the case
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of Ethereum, this allows for several failure modes. If one of the
implementations had a bug that would make it crash on certain
transactions, the network would continue to operate with other
implementations that do not contain this bug. This would be
similar in the case of a DoS attack only effective on one type
of implementation. On the other hand, if a bug or exploit
would result in a different state transition after executing a
transaction, it would create a network split where the victim
implementation would only manage to reach consensus with
nodes using the same implementation. This is riskier than the
previous case but remains safe as long as exchanges and other
entities bridging on-chain activity to off-chain assets ensure
all implementations are in a consistent state before accepting
to process a transaction. Overall, this diversity of clients has
been very beneficial to Ethereum, despite the high maintenance
cost, and has allowed it to operate smoothly for over 6 years.

Differential fuzzing. Having two implementations that should
behave in the same way allows to perform differential fuzzing:
fuzzing both implementations trying to look for cases where
they would behave differently. This technique has already
been used in multiple domains such as cryptography [19],
programming languages [20], and blockchain consensus [21],
[22]. A recent work leveraging differential fuzzing to find bug
in Ethereum clients [23] has managed to find not only most
known consensus bugs but also two new ones, including a
bug that led to a fork in the consensus due to only part of
the full nodes in the network having upgraded to the latest
version [24]. Overall, this shows the potential of differential
fuzzing and how it can be useful for finding bugs and zero-day
exploits.

VII. CONCLUSION

We have argued that the high financial stakes in the context
of DeFi merit an approach to program redundancy inspired
by avionics: the utilization of dissimilar redundancy. Through
implementing the same program logic more than once, ideally
with different programming languages and even by different
engineering teams, and then using an on-chain execution logic
that ensures that the dissimilar implementations must agree
before the on-chain state can update, redundancy is brought
into the smart contract ecosystem. Such redundancy should
serve to make smart contracts, and DeFi as a whole, less
vulnerable to exploits from implementation bugs.

We hope that this paper can offer one step on the path to
a more robust and secure DeFi. As in avionics, in DeFi, the
stakes are high, and the risks real.
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