Skip to main content

Learning-Based Detection of MYCN Amplification in Clinical Neuroblastoma Patients: A Pilot Study

  • Conference paper
  • First Online:
Multiscale Multimodal Medical Imaging (MMMI 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13594))

Included in the following conference series:

  • 539 Accesses

Abstract

Neuroblastoma is one of the most common cancers in infants, and the initial diagnosis of this disease is difficult. At present, the MYCN gene amplification (MNA) status is detected by invasive pathological examination of tumor samples. This is time-consuming and may have a hidden impact on children. To handle this problem, in this paper, we present a pilot study by adopting multiple machine learning (ML) algorithms to predict the presence or absence of MYCN gene amplification. The dataset is composed of retrospective CT images of 23 neuroblastoma patients. Different from previous work, we develop the algorithm without manually segmented primary tumors which is time-consuming and not practical. Instead, we only need the coordinate of the center point and the number of tumor slices given by a subspecialty-trained pediatric radiologist. Specifically, CNN-based method uses pre-trained convolutional neural network, and radiomics-based method extracts radiomics features. Our results show that CNN-based method outperforms the radiomics-based method.

X. Xiang—Also with the Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cohn, S.L., et al.: The international neuroblastoma risk group (INRG) classification system: an INRG task force report. J. Clin. Oncol. 27(2), 289 (2009)

    Article  Google Scholar 

  2. Ambros, P.F., et al.: International consensus for neuroblastoma molecular diagnostics: report from the International Neuroblastoma Risk Group (INRG) biology committee. Br. J. Cancer 100(9), 1471–1482 (2009)

    Article  Google Scholar 

  3. Campbell, K., et al.: Association of MYCN copy number with clinical features, tumor biology, and outcomes in neuroblastoma: a report from the children’s Oncology Group. Cancer 123(21), 4224–4235 (2017)

    Article  Google Scholar 

  4. Lambin, P., et al.: Radiomics: extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 48(4), 441–446 (2012)

    Article  Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Wu, H., et al.: Radiogenomics of neuroblastoma in pediatric patients: CT-based radiomics signature in predicting MYCN amplification. Eur. Radiol. 31(5), 3080–3089 (2020). https://doi.org/10.1007/s00330-020-07246-1

    Article  Google Scholar 

  7. Liu, G., et al.: Incorporating radiomics into machine learning models to predict outcomes of neuroblastoma. J. Digital Imaging 2, 1–8 (2022). https://doi.org/10.1007/s10278-022-00607-w

    Article  Google Scholar 

  8. Huang, S.Y., et al.: Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis. NPJ Breast Cancer 4(1), 1–3 (2018)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1), 1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

    Article  Google Scholar 

  11. Wang, S., et al.: Predicting EGFR mutation status in lung adenocarcinoma on computed tomography image using deep learning. Eur. Respir. J. 53(3) (2019)

    Google Scholar 

  12. Di Giannatale, A., et al.: Radiogenomics prediction for MYCN amplification in neuroblastoma: a hypothesis generating study. Pediatr. Blood Cancer 68(9), e29110 (2021)

    Article  Google Scholar 

  13. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3), 1116–28 (2006)

    Article  Google Scholar 

  14. Van Griethuysen, J.J., et al.: Computational radiomics system to decode the radiographic phenotype. Can. Res. 77(21), e104–e107 (2017)

    Article  Google Scholar 

  15. Zhang, Z., Xiang, X.: Long-tailed classification with gradual balanced loss and adaptive feature generation. arXiv preprint arXiv:2203.00452 (2022)

  16. Hosny, A., Parmar, C., Quackenbush, J., Schwartz, L.H., Aerts, H.J.: Artificial intelligence in radiology. Nat. Rev. Cancer 18(8), 500–10 (2018)

    Article  Google Scholar 

  17. Coroller, T.P., et al.: CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma. Radiother. Oncol. 114(3), 345–50 (2015)

    Article  Google Scholar 

  18. Mackin, D., et al.: Measuring CT scanner variability of radiomics features. Invest. Radiol. 50(11), 757 (2015)

    Article  Google Scholar 

  19. Thawani, R., et al.: Radiomics and radiogenomics in lung cancer: a review for the clinician. Lung Cancer 1(115), 34–41 (2018)

    Article  Google Scholar 

  20. Liu, Z., et al.: Radiomics analysis for evaluation of pathological complete response to neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Clin. Cancer Res. 23(23), 7253–62 (2017)

    Article  Google Scholar 

  21. Liu, Z., et al.: The applications of radiomics in precision diagnosis and treatment of oncology: opportunities and challenges. Theranostics 9(5), 1303 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by HUST Independent Innovation Research Fund (2021XXJS096), Sichuan University Interdisciplinary Innovation Research Fund (RD-03-202108), and the Key Lab of Image Processing and Intelligent Control, Ministry of Education, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Xiang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiang, X., Zhang, Z., Peng, X., Shao, J. (2022). Learning-Based Detection of MYCN Amplification in Clinical Neuroblastoma Patients: A Pilot Study. In: Li, X., Lv, J., Huo, Y., Dong, B., Leahy, R.M., Li, Q. (eds) Multiscale Multimodal Medical Imaging. MMMI 2022. Lecture Notes in Computer Science, vol 13594. Springer, Cham. https://doi.org/10.1007/978-3-031-18814-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18814-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18813-8

  • Online ISBN: 978-3-031-18814-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics