Skip to main content

Cooperative Deep Unsupervised Anomaly Detection

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Abstract

In last years deep learning approaches to anomaly detection are becoming very popular. In most of the first methods the paradigm is to train neural networks initially designed for compression (Auto Encoders) or data generation (GANs) and to detect anomalies as a collateral result. Recently new architectures have been introduced in which the expressive power of deep neural networks is associated with objective functions specifically designed for anomaly detection. One of these methods is \(\textit{Deep-SVDD}\) which, although created for One-Class classification, has been successfully applied to the (semi-)supervised anomaly detection setting. Technically, \(\textit{Deep-SVDD}\) technique forces the deep latent representation of the input data to be enclosed into an hypersphere and labels as anomalies data farthest from its center. In this work we introduce \(\textit{Deep-UAD}\), a neural network approach for unsupervised anomaly detection where, iteratively, a network similar to that of \(\textit{Deep-SVDD}\) is alternatively trained with an Auto Encoder and the two networks share some weights in order for each network to improve its training by exploiting the information coming from the other network. The experiments we conducted show that the performances obtained by the proposed method are better than the ones obtained both by deep learning methods and standard shallow algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

  2. 2.

    https://github.com/zalandoresearch/fashion-mnist.

References

  1. Aggarwal, C.C.: Outlier Analysis. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-47578-3

    Book  MATH  Google Scholar 

  2. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training (2018)

    Google Scholar 

  3. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Technical Report 3, SNU Data Mining Center (2015)

    Google Scholar 

  4. Angiulli, F.: Concentration free outlier detection. In: European Conference on Machine Learning and Knowledge Discovery in Databases, Skopje, Macedonia (2017)

    Google Scholar 

  5. Angiulli, F.: CFOF: a concentration free measure for anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 14(1), 4:1-4:53 (2020)

    Google Scholar 

  6. Angiulli, F., Basta, S., Pizzuti, C.: Distance-based detection and prediction of outliers. IEEE Trans. Knowl. Data Eng. 2(18), 145–160 (2006)

    Article  MATH  Google Scholar 

  7. Angiulli, F., Fassetti, F., Ferragina, L.: Improving deep unsupervised anomaly detection by exploiting VAE latent space distribution. In: Discovery Science (2020)

    Google Scholar 

  8. Angiulli, F., Fassetti, F., Ferragina, L.: \({{\rm Latent }Out}\): an unsupervised deep anomaly detection approach exploiting latent space distribution. Machine Learning (2022). https://doi.org/10.1007/s10994-022-06153-4

  9. Angiulli, F., Pizzuti, C.: Fast outlier detection in large high-dimensional data sets. In: Principles of Data Mining and Knowledge Discovery (PKDD) (2002)

    Google Scholar 

  10. Angiulli, F., Pizzuti, C.: Outlier mining in large high-dimensional data sets. IEEE Trans. Knowl. Data Eng. 2(17), 203–215 (2005)

    Article  MATH  Google Scholar 

  11. Barnett, V., Lewis, T.: Outliers in Statistical Data. Wiley (1994)

    Google Scholar 

  12. Breunig, M.M., Kriegel, H., Ng, R., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the International Conference on Managment of Data (SIGMOD) (2000)

    Google Scholar 

  13. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey (2019)

    Google Scholar 

  14. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 1–15 (2009)

    Article  Google Scholar 

  15. Davies, L., Gather, U.: The identification of multiple outliers. J. Am. Statist. Assoc. 88, 782–792 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning (2017)

    Google Scholar 

  17. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  18. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  19. Hautamäki, V., Kärkkäinen, I., Fränti, P.: Outlier detection using k-nearest neighbour graph. In: ICPR, Cambridge, UK (2004)

    Google Scholar 

  20. Hawkins, S., He, H., Williams, G., Baxter, R.: Outlier detection using replicator neural networks. In: International Conference on Data Warehousing and Knowledge Discovery (DAWAK), pp. 170–180 (2002)

    Google Scholar 

  21. Jin, W., Tung, A., Han, J.: Mining top-n local outliers in large databases. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD) (2001)

    Google Scholar 

  22. Kawachi, Y., Koizumi, Y., Harada, N.: Complementary set variational autoencoder for supervised anomaly detection. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2366–2370 (2018)

    Google Scholar 

  23. Kingma, D.P., Welling, M.: Auto-encoding variational bayes (2013)

    Google Scholar 

  24. Knorr, E., Ng, R., Tucakov, V.: Distance-based outlier: algorithms and applications. VLDB J. 8(3–4), 237–253 (2000)

    Article  Google Scholar 

  25. Radovanović, M., Nanopoulos, A., Ivanović, M.: Reverse nearest neighbors in unsupervised distance-based outlier detection. IEEE Trans. Knowl. Data Eng. 27(5), 1369–1382 (2015)

    Article  Google Scholar 

  26. Ruff, L., et al.: Deep one-class classification. In: Proceedings of the 35th ICML, Stockholm, Sweden (2018)

    Google Scholar 

  27. Ruff, L., et al.: A unifying review of deep and shallow anomaly detection. Proc. IEEE 109(5), 756–795 (2021)

    Article  Google Scholar 

  28. Ruff, L., et al.: Deep semi-supervised anomaly detection. In: 8th ICLR, Addis Ababa, Ethiopia. OpenReview.net (2020)

    Google Scholar 

  29. Schlegl, T., Seeböck, P., Waldstein, S., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. In: Medical Image Analysis 54 (2019)

    Google Scholar 

  30. Schölkopf, B., Platt, J.C., Shawe-Taylor, J., Smola, A.J., Williamson, R.C.: Estimating the support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)

    Article  MATH  Google Scholar 

  31. Sáinchez-Martín, P., Olmos, P.M., Perez-Cruz, F.: Improved BIGAN training with marginal likelihood equalization (2020)

    Google Scholar 

  32. Sun, J., Wang, X., Xiong, N., Shao, J.: Learning sparse representation with variational auto-encoder for anomaly detection. IEEE Access 6, 33353–33361 (2018)

    Article  Google Scholar 

  33. Tax, D.M.J., Duin, R.P.W.: Support vector data description. Mach. Learn. 54, 45–66 (2004). https://doi.org/10.1023/B:MACH.0000008084.60811.49

    Article  MATH  Google Scholar 

  34. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Angiulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Angiulli, F., Fassetti, F., Ferragina, L., Spada, R. (2022). Cooperative Deep Unsupervised Anomaly Detection. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics