Skip to main content

A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments

  • Conference paper
  • First Online:
Discovery Science (DS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13601))

Included in the following conference series:

Abstract

The semantic heterogeneity concern in the information integration can be handled by applying ontology alignment. The purpose of the ontology alignment procedure is to locate concepts that are semantically identical in two ontologies. But, one of these alignments’ downsides is the lack of expressiveness and uncertainties, which can be accounted by using fuzzy complex alignments. To address this issue, the use of an effective strategy, consisting of two parts, is applied. We proceeded by establishing of a fuzzification approach that enables a semantic representation of both crisp and fuzzy data. The next step was to model fuzzy OWL 2 ontologies in vector space by a semantic embedding-based ontology matching technique and compute their similarity scores to determine the correlation levels. Then, it is reinforced by a stable marriage-based alignment extraction algorithm to establish a high-quality matching. Our proposed alignment scheme has been validated and reviewed on the benchmark tracks supplied by the Ontology Alignment Evaluation Initiative (OAEI). Experimental findings demonstrated the effectiveness of our matching method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://owlapi.sourceforge.net/.

  2. 2.

    https://wordnet.princeton.edu/.

  3. 3.

    http://oaei.ontologymatching.org/2018/complex/index.html.

References

  1. Asan, A., et al.: Supporting shared hypothesis testing in the biomedical domain. J Biomed. Seman. 9(1), 9 (2018)

    Article  Google Scholar 

  2. Bouaziz, R., Ghorbel, H., Bahri, A.: Fuzzy ontologies model for semantic web. In: The Second International Conference on Information and Knowledge Management, eKNow, Maorten, Netherlands Antilles (2010)

    Google Scholar 

  3. Chen, J., Hu, P., Jiménez-Ruiz, E., Holter, O., Antonyrajah, D., Horrocks, I.: Owl2vec*: embedding of owl ontologies. Mach. Learn. 110, 1813–1845 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)

    Google Scholar 

  5. Dou, D., Qin, H., Lependu, P.: Ontograte: towards automatic integration for relational databases and the semantic web through an ontology-based framework. Int. J. Semant. Comput. 4(1), 123–151 (2010)

    Article  MATH  Google Scholar 

  6. El-Sappagh, S., Elmogy, M., Riad, A.: A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis. Artif. Intell. Med. 65(3), 179–208 (2015)

    Article  Google Scholar 

  7. Faria, D., Pesquita, C., Santos, E., Cruz, I.F., Couto, F.M.: Agreement maker light results for OAEI 2013. In: Proceedings of the 8th International Conference on Ontology Matching, vol. 1111, pp. 101–108. CEUR-WS.org, Aachen, DEU (2013)

    Google Scholar 

  8. Gomez-Romero, J., Bobillo, F., Ros, M., Molina-Solana, M., Ruiz, M., Martín-Bautista, M.: A fuzzy extension of the semantic building information model. Autom. Constr. 57, 202–212 (2015)

    Article  Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. CoRR (2016)

    Google Scholar 

  10. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. Foundations of Computing (2013)

    Google Scholar 

  11. Hartung, M., Groß, A., Rahm, E.: Conto-diff: generation of complex evolution mappings for life science ontologies. J. Biomed. Inform. 46(1), 15–32 (2013)

    Article  Google Scholar 

  12. Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17746-0_26

    Chapter  Google Scholar 

  13. Jiang, S., Lowd, D., Kafle, S., Dou, D.: Ontology matching with knowledge rules. In: Hameurlain, A., Küng, J., Wagner, R., Chen, Q. (eds.) Transactions on Large-Scale Data- and Knowledge-Centered Systems XXVIII. LNCS, vol. 9940, pp. 75–95. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53455-7_4

    Chapter  Google Scholar 

  14. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext.zip: Compressing text classification models. CoRR (2016)

    Google Scholar 

  15. Jun, Z., Yiduo, L., Jiatao, J., Yi, Y.: Fuzzy Ontology Models Based on Fuzzy Linguistic Variable for Knowledge Management and Information Retrieval. In: Proceedings of Intelligent Information Processing, pp. 58–67. Beijing, China (2008)

    Google Scholar 

  16. Kolyvakis, P., Kalousis, A., Kiritsis, D.: DeepAlignment: Unsupervised ontology matching with refined word vectors. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1), pp. 787–798. Association for Computational Linguistics, New Orleans, Louisiana (2018)

    Google Scholar 

  17. Li, G., Yan, L., Ma, Z.: An approach for approximate subgraph matching in fuzzy RDF graph. Fuzzy Sets Syst. 376, (2019)

    Google Scholar 

  18. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the semantic web. J. Web Semant. 6(4), 291–308 (2008)

    Article  Google Scholar 

  19. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. CoRR (2013)

    Google Scholar 

  20. Moon, C., Jones, P., Samatova, N.F.: Learning entity type embeddings for knowledge graph completion. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, pp. 2215–2218. Association for Computing Machinery, New York (2017)

    Google Scholar 

  21. Nkisi-Orji, I., Wiratunga, N., Massie, S., Hui, K.-Y., Heaven, R.: Ontology alignment based on word embedding and random forest classification. In: Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N., Ifrim, G. (eds.) ECML PKDD 2018. LNCS (LNAI), vol. 11051, pp. 557–572. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10925-7_34

    Chapter  Google Scholar 

  22. Ouali, I., Ghozzi, F., Taktak, R., Hadj Sassi, M.S.: Ontology alignment using stable matching. Procedia Comput. Sci. 159, 746–755 (2019), knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 23rd International Conference KES2019

    Google Scholar 

  23. Ristoski, P., Rosati, J., Noia, T.D., Leone, R.D., Paulheim, H.: Rdf2vec: RDF graph embeddings and their applications. Semant. Web 10, 721–752 (2019)

    Article  Google Scholar 

  24. Ritze, D., Meilicke, C., Šváb Zamazal, O., Stuckenschmidt, H.: A pattern-based ontology matching approach for detecting complex correspondences, vol. 551, pp. 25–36 (2009)

    Google Scholar 

  25. Smaili, F.Z., Gao, X., Hoehndorf, R.: Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations. Bioinformatics 34(13), i52–i60 (2018)

    Google Scholar 

  26. Smaili, F.Z., Gao, X., Hoehndorf, R.: OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction. Bioinformatics 35(12), 2133–2140 (2018)

    Google Scholar 

  27. Thiéblin, E., Haemmerlé, O., Trojahn dos Santos, C.: Complex matching based on competency questions for alignment: a first sketch. In: 13th International Workshop on Ontology Matching co-located with the 17th International Semantic Web Conference (OM@ISWC 2018), Monterey, United States, pp. 66–70 (2018)

    Google Scholar 

  28. Todorov, K., Hudelot, C., Popescu, A., Geibel, P.: Fuzzy ontology alignment using background knowledge. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 22(1), 75–112 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: a survey of approaches and applications. IEEE Trans. Knowl. Data Eng. 29(12), 2724–2743 (2017)

    Article  Google Scholar 

  30. Xue, X., Wang, H., Zhang, J., Zhang, J., Chen, D.: An automatic biomedical ontology meta-matching technique. J. Netw. Intell. 4(3), 109–113 (2019)

    Google Scholar 

  31. Xue, X., Wang, Y.: Optimizing ontology alignments through a memetic algorithm using both matchfmeasure and unanimous improvement ratio. Artif. Intell. 223, 65–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xue, X., Wang, Y.: Using memetic algorithm for instance coreference resolution. IEEE Trans. Knowl. Data Eng. 28(2), 580–591 (2016)

    Article  Google Scholar 

  33. Xue, X., Yao, X.: Interactive ontology matching based on partial reference alignment. Appl. Soft Comput. 72, 355–370 (2018)

    Article  Google Scholar 

  34. Xue, X., Zhang, J.: Matching large-scale biomedical ontologies with central concept based partitioning algorithm and adaptive compact evolutionary algorithm. Appl. Soft Comput. 106, 107343 (2021)

    Article  Google Scholar 

  35. Zadeh., L.A.: A fuzzy-algorithmic approach to the definition of complex or imprecise concepts. Intl. J. Man Mach. Stud. 8(3), 249–291 (1976)

    Google Scholar 

  36. Zekri, F., Turki, E., Bouaziz, R.: Alzfuzzyonto : Une ontologie floue pour l’aide à la décision dans le domaine de la maladie d’alzheimer. In: Actes du 18ème Congrès INFORSID, pp. 83–98. Biarritz, France (2015)

    Google Scholar 

  37. Zhang, F., Cheng, J., Ma, Z.: A survey on fuzzy ontologies for the semantic web. Knowl. Eng. Rev. 31(3), 278–321 (2016)

    Article  Google Scholar 

  38. Zhou, L., Cheatham, M., Krisnadhi, A., Hitzler, P.: A complex alignment benchmark: geolink dataset. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11137, pp. 273–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00668-6_17

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houda Akremi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akremi, H., Ayadi, M.G., Zghal, S. (2022). A Fuzzy OWL Ontologies Embedding for Complex Ontology Alignments. In: Pascal, P., Ienco, D. (eds) Discovery Science. DS 2022. Lecture Notes in Computer Science(), vol 13601. Springer, Cham. https://doi.org/10.1007/978-3-031-18840-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-18840-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-18839-8

  • Online ISBN: 978-3-031-18840-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics