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Abstract. Asrestricted quantum computers are slowly becoming a real-
ity, the search for meaningful first applications intensifies. In this domain,
one of the more investigated approaches is the use of a special type of
quantum circuit — a so-called quantum neural network — to serve as a
basis for a machine learning model. Roughly speaking, as the name sug-
gests, a quantum neural network can play a similar role to a neural net-
work. However, specifically for applications in machine learning contexts,
very little is known about suitable circuit architectures, or model hyper-
parameters one should use to achieve good learning performance. In this
work, we apply the functional ANOVA framework to quantum neural
networks to analyze which of the hyperparameters were most influen-
tial for their predictive performance. We analyze one of the most typ-
ically used quantum neural network architectures. We then apply this
to 7 open-source datasets from the OpenML-CC18 classification bench-
mark whose number of features is small enough to fit on quantum hard-
ware with less than 20 qubits. Three main levels of importance were
detected from the ranking of hyperparameters obtained with functional
ANOVA. Our experiment both confirmed expected patterns and revealed
new insights. For instance, setting well the learning rate is deemed the
most critical hyperparameter in terms of marginal contribution on all
datasets, whereas the particular choice of entangling gates used is con-
sidered the least important except on one dataset. This work introduces
new methodologies to study quantum machine learning models and pro-
vides new insights toward quantum model selection.

Keywords: Hyperparameter importance + Quantum neural networks -
Quantum machine learning

1 Introduction

Quantum computers have the capacity to efficiently solve computational prob-
lems believed to be intractable for classical computers, such as factoring [42] or
simulating quantum systems [12]. However, with the Noisy Intermediate-Scale
Quantum era [33], quantum algorithms are confronted with many limitations
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(e.g., the number of qubits, decoherence, etc.). Consequently, hybrid quantum-
classical algorithms were designed to work around some of these constraints while
targeting practical applications such as chemistry [27], combinatorial optimiza-
tion [10], and machine learning [2]. Quantum models can exhibit clear potential
in special datasets where we have theoretically provable separations with classi-
cal models [18,22,35,46]. More theoretical works also study these models from
a generalization perspective [8]. Quantum circuits with adjustable parameters,
also called quantum neural networks, have been used to tackle regression [25],
classification [14], generative adversarial learning [50], and reinforcement learn-
ing tasks [18,44].

However, the value of quantum machine learning on real-world datasets is
still to be investigated in any larger-scale systematic fashion [13,32]. Currently,
common practices from machine learning, such as large-scale benchmarking,
hyperparameter importance, and analysis have been challenging tools to use
in the quantum community [39]. Given that there exist many ways to design
quantum circuits for machine learning tasks, this gives rise to a hyperparameter
optimization problem. However, there is currently limited intuition as to which
hyperparameters are important to optimize and which are not. Such insights can
lead to much more efficient hyperparameter optimization [5,11,26].

In order to fill this gap, we employ functional ANOVA [16,45], a tool for
assessing hyperparameter importance. This follows the methodology of [34,41],
who employed this across datasets, allowing for more general results. For this, we
selected a subset of several low-dimensional datasets from the OpenML-CC18
benchmark [4], that are matching the current scale of simulations of quantum
hardware. We defined a configuration space consisting of ten hyperparameters
from an aggregation of quantum computing literature and software. We extend
this methodology by an important additional verification step, where we ver-
ify the performance of the internal surrogate models. Finally, we perform an
extensive experiment to verify whether our conclusions hold in practice. While
our main findings are in line with previous intuition on a few hyperparameters
and the verification experiments, we also discovered new insights. For instance,
setting well the learning rate is deemed the most critical hyperparameter in
terms of marginal contribution on all datasets, whereas the particular choice of
entangling gates used is considered the least important except on one dataset.

2 Background

In this section, we introduce the necessary background on functional ANOVA,
quantum computing, and quantum circuits with adjustable parameters for super-
vised learning.

2.1 Functional ANOVA

When applying a new machine learning algorithm, it is unknown which hyper-
parameters to modify in order to get high performances on a task. Several
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Validation binary accuracy

00
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Fig. 1. Examples of marginals for a quantum neural network with validation accuracy
as performance on the banknote-authentication dataset. The hyperparameters corre-
spond to the learning rate used during training (a), and the number of layers, also
known as depth (b), and their combination (c). The hyperparameter values for learn-
ing rate are on a log scale. When considered individually, we see for instance that depth
and learning rate should not be set too high for better performances. However, when
grouped together, the learning rate seems most influential.

techniques exist that assess hyperparameter importance, such as functional
ANOVA [36]. The latter framework can detect the importance of both individual
hyperparameters and interaction effects between different subsets of hyperpa-
rameters. We first introduce the relevant notation, based on the work by Hutter

et al. [16].
Let A be a machine learning algorithm that has n hyperparameters with
domains @4, ...,0, and configuration space @ = O X...x O,. An instantiation

of Ais a vector @ = {6;,...,60,} with 6, € O, (this is also called a configuration
of A). A partial instantiation of A is a vector 8y = {6;,,...,0;, } with a subset
U= {i,...,it} €N = [n] ={1,...,n} of the hyperparameters fixed, and the
values for other hyperparameters unspecified. Note that 8 = 6.

Functional ANOVA is based on the concept of a marginal of a hyperpa-
rameter, i.e., how a given value for a hyperparameter performs, averaged over
all possible combinations of the other hyperparameters’ values. The marginal
performance ay(Oy) is described as the average performance of all complete
instantiations @ that have the same values for hyperparameters that are in 0y .
As an illustration, Fig.1 shows marginals for two hyperparameters of a quan-
tum neural network and their union. As the number of terms to consider for
the marginal can be very large, the authors of [16] used tree-based surrogate
regression models to calculate efficiently the average performance. Such a model
yields predictions ¢ for the performance p of arbitrary hyperparameter settings.

Functional ANOVA determines how much each hyperparameter (and each
combination of hyperparameters) contributes to the variance of § across the algo-
rithm’s hyperparameter space @, denoted V. Intuitively, if the marginal has high
variance, the hyperparameter is highly important to the performance measure.
Such framework has been used for studying the importance of hyperparameters
of common machine learning models such as support vector machines, random
forests, Adaboost, and residual neural networks [34,41]. We refer to [16] for a
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complete description and introduce the quantum supervised models considered
in this study along with the basics of quantum computing.

2.2 Supervised Learning with Parameterized Quantum Circuits

Basics of Quantum Computing. In quantum computing, computations are
carried out by the manipulation of qubits, similarly to classical computing with
bits. A system of n qubits is represented by a 2""-dimensional complex vector
in the Hilbert space H = (C?)®™. This vector describes the state of the system
[)) € H of unit norm (|)) = 1. The bra-ket notation is used to describe
vectors |1), their conjugate transpose (| and inner-products (¥ |¢’) in H. Single-
qubit computational basis states are given by [0) = (1,0)7,|1) = (0,1), and
their tensor products describe general computational basis states, e.g., |10) =
1) ® |0) = (0,0,1,0).

The quantum state is modified with unitary operations or gates U acting
on H. This computation can be represented by a quantum circuit (see Fig.2).
When a gate U acts non-trivially only on a subset S C [n] of qubits, we denote
such operation U ® 1, s. In this work, we use, the Hadamard gate H, the
single-qubit Pauli gates X, Z,Y and their associated rotations Rx, Ry, Rz:

H= % G —11) 4 = ((1) —01> Rz (w) :eXp(fi%Z)’

Y = (? _OZ> Ry (w) = exp(—i%Y),X - ((1) (1)) R (w) = exp(—i%X),
(1)

The rotation angles are denoted w € R and the 2-qubit controlled-Z gate
I = diag(1,1,1, 1) as well as the v/iSWAP given by the matrix

V200 0
1 0140
V2l 0i1o

000v2

Measurements are carried out at the end of a quantum circuit to obtain
bitstrings. Such measurement operation is described by a Hermitian operator
O called an observable. Its spectral decomposition O = )~ A, P, in terms
of eigenvalues \,, and orthogonal projections P,, defines the outcomes of this
measurement, according to the Born rule: a measured state |¢) gives the outcome
Am and gets projected onto the state Py, |¢) / v/p(m) with probability p(m) =
(] P 1) = (Pm),,- The expectation value of the observable O with respect to
i) is Ey[O] = 32, p(m)Am = (O),,. We refer to [30] for more basic concepts of
quantum computing, and follow with parameterized quantum circuits.

(2)

Parameterized Quantum Circuits. A parameterized quantum circuit (also
called ansatz) can be represented by a quantum circuit with adjustable real-
valued parameters 0. The latter is then defined by a unitary U(8@) that acts
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10) {Box(a) fre—e{ Ry (0) H R (0) HA
10) {Rx(2)]; [By (6) H R2(63) [ A
0) { Rx(aa)} | By (63) | Rz (63) LA
0) < Rx (24) fk {Ry(ei‘)HRz(G‘%)

Fig. 2. Parameterized quantum circuit architecture example with 4 qubits and ring
connectivity (qubit 1 is connected to 2, 2 to 3, 3 to 4, and 4 to 1 makes a ring).
The first layer of Rx is the encoding layer Uenc, taking a data instance x € R* as
input. It is followed by the entangling part with Ctrl-Z gates. Finally a variational
layer Uyar is applied. Eventually, we do measurements to be converted into predictions
for a supervised task. The dashed part can be repeated many times to increase the
expressive power of the model.

on a fixed n-qubit state (e.g., |0°™)). The ansatz may be constructed using
the formulation of the problem at hand (typically the case in chemistry [27]
or optimization [10]), or with a problem-independent generic construction. The
latter are often designated as hardware-efficient.

For a machine learning task, this unitary encodes an input data instance
z € R? and is parameterized by a trainable vector 8. Many designs exist
but hardware-efficient parameterized quantum circuits [19] with an alternating-
layered architecture are often considered in quantum machine learning when
no information on the structure of the data is provided. This architecture is
depicted in an example presented in Fig. 2 and essentially consists of an alter-
nation of encoding unitaries U, and variational unitaries Uy,,. In the example,
Ucne is composed of single-qubit rotations Rx, and Uy, of single-qubit rotations
R., R, and entangling Ctrl-Z gates, represented as lin Fig. 2, forming the entan-
gling part of the circuit. Such entangling part denoted Uy, can be defined by
connectivity between qubits.

These parameterized quantum circuits are similar to neural networks where
the circuit architecture is fixed and the gate parameters are adjusted by a clas-
sical optimizer such as gradient descent. They have also been named quantum
neural networks. The parameterized layer can be repeated multiple times, which
increases its expressive power like neural networks [43]. The data encoding strat-
egy (such as reusing the encoding layer multiple times in the circuit - a strategy
called data reuploading) also influences the latter [31,40].

Finally, the user can define the observable(s) and the post-processing method
to convert the circuit outputs into a prediction in the case of supervised learning.
Commonly, observables based on the single-qubit Z operator are used. When
applied on m < n qubits, the observable is represented by a 2™ — 1 square
diagonal matrix with {—1,1} values, and is denoted O =Z Q@ Z® ---® Z.

Having introduced parameterized quantum circuits, we present the hyperpa-
rameters of the models, the configuration space, and the experimental setup for
our functional ANOVA-based hyperparameter importance study.
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3 Methods

In this section, we describe the network type and its hyperparameters and define
the methodology that we follow.

3.1 Hyperparameters and Configuration Space

Many designs have been proposed for parameterized quantum circuits depend-
ing on the problem at hand or motivated research questions and contributions.
Such propositions can be aggregated and translated into a set of hyperparam-
eters and configuration space for the importance study. As such, we first did
an extensive literature review on parameterized quantum circuits for machine
learning [2,14,15,17,18,21,23-25,32,38,44,47-50] as well as quantum machine
learning software [1,3,7]. This resulted in a list of 10 hyperparameters, pre-
sented in Table 1. We choose them so we balance between having well-known
hyperparameters that are expected to be important, and less considered ones in
the literature. For instance, many works use Adam [20] as the underlying opti-
mizer, and the learning rate should generally be well chosen. On the contrary,
the entangling gate used in the parameterized quantum circuit is generally a
fixed choice.

From the literature, we expect data encoding strategy/circuit to be impor-
tant. We choose two main forms for Ug,.. The first one is the hardware-efficient
&, Rx(z;). The second takes the following form from [3,14,17]:

Uene(x) = U, () H®" (3)

UZ(II:) = exp —im Z%ZZ + Z .’Eil'jZiZj . (4)
i=1 j=1,
7>

Using data-reuploading [31] results in a more expressive model [40], and
this was also demonstrated numerically [18,31,44]. Finally, pre-processing of
the input is also sometimes used in encoding strategies that directly feed input
features into Pauli rotations. It also influences the expressive power of the
model [40]. In this work, we choose a usual activation function tanh commonly
used in neural networks. We do so as its range is [—1, 1], which is the same as
the data features during training after the normalization step.

The list of hyperparameters we take into account is non-exhaustive. It can
be extended at will, at the cost of more software engineering and budget for
running experiments.

3.2 Assessing Hyperparameter Importance

Once the list of hyperparameters and configuration space are decided, we perform
the hyperparameter importance analysis with the functional ANOVA frame-
work. Assessing the importance of the hyperparameters boils down to four steps.
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Table 1. List of hyperparameters considered for hyperparameter importance for quan-

C. Moussa et al.

tum neural network, as we named them in our Tensorflow-Quantum code.

Hyperparameter

Values

Description

Adam learning
rate

[107*,0.5] (log)

The learning rate with which the quantum
neural network starts training. The range
was taken from the automated machine
learning library Auto-sklearn [11]. We
uniformly sample taking the logarithmic
scale.

batch size 16,32,64 Number of samples in one batch of Adam
used during training

depth {1,2,---,10} | Number of variational layers defining the
circuit

is data_encoding | True, False Whether we use the hardware-efficient

hardware efficient circuit Q_, Rx(z:) or an IQP circuit
defined in Eq. 3 to encode the input data.

use reuploading | True, False Whether the data encoding layer is used
before each variational layer or not.

have less True, False If True, only use layers of Ry, Rz gates as

rotations the variational layer. If False, add a layer of
Rx gates.

entangler cz, sqiswap Which entangling gate to use in Uent

operation

map type ring, full, pairs | The connectivity used for Uent. The ring

connectivity use an entangling gate between
consecutive indices (i, + 1),4 € {1,...,n}
of qubits. The full one uses a gate between
each pair of indices (i, 7),7 < j. Pairs
connect even consecutive indices first, then
odd consecutive ones.

input activation
function

linear, tanh

Whether to input tanh(z;) as rotations or
just x;.

output circuit

27, m7Z

The observable(s) used as output(s) of the
circuit. If 27, we use all possible pairs of
qubit indices defining Z ® Z. If mZ, the
tensor product acts on all qubits. Note we
do not use single-qubit Z observables
although they are quite often used in the
literature. Indeed, they are provably not
using the entire circuit when it is shallow.
Hence we decided to use Z ® Z instead.
Also, a single neuron layer with a sigmoid
activation function is used as a final decision
layer similar to [38]
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Firstly, the models are applied to various datasets by sampling various configu-
rations in a hyperparameter optimization process. The performances or metrics
of the models are recorded along. The sampled configurations and performances
serve as data for functional ANOVA. As functional ANOVA uses internally tree-
based surrogate models, namely random forests [6], we decided to add an extra
step with reference to [34]. In the second step, we verify the performance of
the internal surrogate models. We cross-evaluate them using regression metrics
commonly used in surrogate benchmarks [9]. Surrogates performing badly at this
step are then discarded from the importance analysis, as they can deteriorate
the quality of the study. Thirdly, the marginal contribution of each hyperparam-
eter over all datasets can be then obtained and used to infer a ranking of their
importance. Finally, a verification step similar to [34] is carried out to confirm
the inferred ranking previously obtained. We explain such a procedure in the
following section.

3.3 Verifying Hyperparameter Importance
When applying the functional ANOVA

framework, an extra verification step is

added to confirm the output from a more

intuitive notion of hyperparameter impor- ;" —:E

tance [34]. It is based on the assumption g “t_ ;
i

that hyperparameters that perform badly
when fixed to a certain value (while other
hyperparameters are optimized), will be
important to optimize. The authors of [34] " ‘
proposed to carry out a costly random
search procedure fixing one hyperparame- ,
ter at a time. In order to avoid a bias to the
chosen value to which this hyperparameter
is fixed, several values are chosen, and the
optimization procedure is carried out mul-
tiple times. Formally, for each hyperparam-
eter 0; we measure y;:f a.s .the result Of_ a by different configurations of hyper-
random search for maximizing the metric, parameters over each dataset. The
fixing 0; to a given value f € Fj, F; € ©j. metric of interest in the study is
For categorical 93’ with domain @j7 Iy = the 10-fold cross-validation accuracy.
©; is used. For numeric 0;, the authors We take the best-achieved metric per
of [34] use a set of 10 values spread uni- model trained over 100 epochs.
formly over 6;’s range. We then compute
y; = ﬁ > fer, Yy; ¢, representing the score when not optimizing hyperparam-
eter ;, averaged over fixing 6; to various values it can take. Hyperparameters
with lower values for y; are assumed to be more important since the performance
should deteriorate more when set sub-optimally.

In our study, we extend this framework to be used on the scale of quantum
machine learning models. As quantum simulations can be very expensive, we

Validation binary accuracy

breast..,

ilpd
Phoneme

wilt -

Fig. 3. Performances of 1000 quan-
tum machine learning models defined
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Table 2. List of datasets used in this study. The number of features is obtained after
a usual preprocessing used in machine learning methods, such as one-hot-encoding.

Dataset OpenML Number of | Number of
Task ID features instances
breast-w 15 9 699
diabetes 37 8 768
phoneme 9952 5 5404
ilpd 9971 11 583
banknote-authentication 10093 4 1372
blood-transfusion-service-center | 10101 4 748
wilt 146820 5 4839

carry out the verification experiment by using the predictions of the surrogate
instead of fitting new quantum models during the verification experiment. The
surrogates yield predictions g for the performance of arbitrary hyperparameter
settings sampled during a random search. Hence, they serve to compute (e
This is also why we assessed the quality of the built-in surrogates as the second
step. Poorly-performing surrogates can deteriorate the quality of the constructed
marginals, and therefore lead to poorly-supported conclusions.

4 Dataset and Inclusion Criteria

To apply our quantum models and study the importance of the previously intro-
duced hyperparameters, we consider classical datasets. Similarly to [34], we use
datasets from the OpenML-CC18 benchmark suite [4]. In our study, we consider
only the case where the number of qubits available is equal to the number of
features, a common setting in the quantum community. As simulating quantum
circuits is a costly task, we limit this study to the case where the number of
features is less than 20 after preprocessing.! Our first step was to identify which
datasets fit this criterion. We include all datasets from the OpenML-CC18 that
have 20 or fewer features after categorical hyperparameters have been one-hot-
encoded, and constant features are removed. Afterwards, the input variables are
also scaled to unit variance as a normalization step. The scaling constants are
calculated on the training data and applied to the test data.

The final list of datasets is given in Table2. In total, 7 datasets fitted the
criterion considered in this study. For all of them, we picked the OpenML Task
ID giving the 10-fold cross-validation task. A quantum model is then applied
using the latter procedure, with the aforementioned preprocessing steps.

1 A 10-fold cross-validation run in our experiment takes on average 262 minutes for
100 epochs with Tensorflow Quantum [7].
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5 Results

In this section, we present the results obtained using the hyperparameters and
the methodology defined in Sect. 3 with the datasets described in Sect. 4. First,
we show the distribution of performances obtained during a random search where
configurations are independently sampled for each dataset. Then we carry out
the surrogate verification. Finally, we present the functional ANOVA results
in terms of hyperparameter importance with marginal contributions and the
random search verification per hyperparameter.

5.1 Performance Distributions per Dataset

For each dataset, we sampled independently 1000 hyperparameter configura-
tions and run the quantum models for 100 epochs as budget. As a performance
measure, we recorded the best validation accuracy obtained over 100 epochs.
Figure 3 shows the distribution of the 10-fold cross-validation accuracy obtained
per dataset. We observe the impact of hyperparameter optimization by the dif-
ference between the least performing and the best model configuration. For
instance, on the wilt dataset, the best model gets an accuracy close to 1, and the
least below 0.25. We can also see that some datasets present a smaller spread
of performances. ilpd and blood-transfusion-service-center are in this case. It
seems that hyperparameter optimization does not have a real effect, because
most hyperparameter configurations give the same result. As such, the surro-
gates could not differentiate between various configurations. In general, hyper-
parameter optimization is important for getting high performances per dataset
and detecting datasets where the importance study can be applied.

5.2 Surrogate Verification

Functional ANOVA relies on an internal surrogate model to determine the
marginal contribution per hyperparameter. If this surrogate model is not accu-
rate, this can have a severe limitation on the conclusions drawn from functional
ANOVA. In this experiment, we verify whether the hyperparameters can explain
the performances of the models. Table 3 shows the performance of the internal
surrogate models. We notice low regression scores for the two datasets (less than
0.75 R2 scores). Hence we remove them from the analysis.

5.3 Marginal Contributions

For functional ANOVA, we used 128 trees for the surrogate model. Figure 4(a,b)
shows the marginal contribution of each hyperparameter over the remaining 5
datasets. We distinguish 3 main levels of importance. According to these results,
the learning rate, depth, and the data encoding circuit and reuploading strat-
egy are critical. These results are in line with our expectations. The entangler
gate, connectivity, and whether we use Rx gates in the variational layer are the
least important according to functional ANOVA. Hence, our results reveal new
insights into these hyperparameters that are not considered in general.
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5.4 Random Search Verification

In line with the work of [34], we perform an additional verification experiment
that verifies whether the outcomes of functional ANOVA are in line with our
expectations. However, the verification procedure involves an expensive, post-hoc
analysis: a random search procedure fixing one hyperparameter at a time. As our
quantum simulations are costly, we used the surrogate models fitted on the cur-

Table 3. Performances of the surrogate models built within functional ANOVA over
a 10-fold cross-validation procedure. We present the average coefficient of determina-
tion (R2), root mean squared error (RMSE), and Spearman’s rank correlation coeffi-
cient (CC). These are common regression metrics for benchmarking surrogate models
on hyperparameters [9]. The surrogates over ilpd and blood-transfusion-service-center
obtain low scores (less than .75 R2), hence we remove them from the study.

Dataset R2 score RMSE CcC
breast-w 0.8663 | 0.0436 0.9299
diabetes 0.7839 0.0155 0.8456
phoneme 0.8649 0.0285 0.9282
ilpd 0.1939 | 0.0040 0.4530
banknote-authentication 0.8579 | 0.0507 0.9399
blood-transfusion-service-center | 0.6104 | 0.0056 0.8088
wilt 0.7912 ]0.0515 0.8015

task_name
0.25{ — breast-w

~—— phoneme

—— banknote-authentication
— wilt
—— diabetes

0.25 task_name
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Fig. 4. The marginal contributions per dataset are presented as a) the variance contri-
bution and b) the difference between the minimal and maximal value of the marginal
of each hyperparameter. The hyperparameters are sorted from the least to most impor-
tant using the median. We distinguish from the plot 3 main levels of importance.
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rent dataset considered over the 1 000 configurations obtained initially to predict
the performances one would obtain when presented with a new configuration.
Figure 5 shows the average rank of each run of random search, labeled with
the hyperparameter whose value was fixed to a default value. A high rank
implies poor performance compared to the other configurations, meaning that
tuning this hyperparameter would have been important. We witness again the
3 levels of importance, with almost the same order obtained. However, the
input_activation_function is deemed more important while batch size is less.
More simulations with more datasets LGRS

) — batchsize

may be required to validate the impor- e

~—— entangler operation

tance. However, we retrieve empirically — « T el

—— input activation function
—— is data encoding hardware efficient

the importance of well-known hyperpa- ~ — i

map type

rameters while considering less important L.

ones. Hence functional ANOVA becomes =~ e —
an interesting tool for quantum machine
learning in practice.

il
6 Conclusion ; M

AL
In this work, we study the importance . SR T
of hyperparameters related to quantum 0 0 ™ 0 0 3
neural networks for classification using e
the functional ANOVA framework. Our Fig. 5. Verification experiment of the
experiments are carried out over OpenML  importance of the hyperparameters. A
datasets that match the current scale random search procedure up to 500
of quantum hardware simulations (i.e., iterations excluding one parameter at
datasets that have at most 20 features @ time is used. A lower curve means
after pre-processing operators have been Fhe hyperparameter is deemed less
applied, hence using 20 qubits). We mportant.
selected and presented the hyperparameters from an aggregation of quantum
computing literature and software. Firstly, hyperparameter optimization high-
lighted datasets where we observed high differences between configurations. This
underlines the importance of hyperparameter optimization for these datasets.
There were also datasets that showed little difference. These led us to extend the
methodology by adding an additional verification step of the internal surrogate
performances. From our results, we distinguished 3 main levels of importance.
On the one hand, Adam’s learning rate, depth, and the data encoding strat-
egy are deemed very important, as we expected. On the other hand, the less
considered hyperparameters such as the particular choice of the entangling gate
and using 3 rotation types in the variational layer are in the least important
group. Hence, our experiment both confirmed expected patterns and revealed
new insights for quantum model selection.

For future work, we plan to further investigate methods from the field of auto-
mated machine learning to be applied to quantum neural networks [5,11,26].
Indeed, our experiments have shown the importance of hyperparameter opti-
mization, and this should become standard practice and part of the protocols

Average Rank
=
é Y
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applied within the community. We further envision functional ANOVA to be
employed in future works related to quantum machine learning and understand-
ing how to apply quantum models in practice. For instance, it would be interest-
ing to consider quantum data, for which quantum machine learning models may
have an advantage. Plus, extending hyperparameter importance to techniques for
scaling to a large number of features with the number of qubits, such as dimen-
sionality reduction or divide-and-conquer techniques, can be left for future work.
Finally, this type of study can also be extended to different noisy hardware and
towards algorithm/model selection and design. If we have access to a cluster
of different quantum computers, then choosing which hardware works best for
machine learning tasks becomes possible. One could also extend our work with
meta-learning [5], where a model configuration is selected based on meta-features
created from dataset features. Such types of studies already exist for parameter-
ized quantum circuits applied to combinatorial optimization [28,29,37].
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